
ED 052 482

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT NO
BUREAU MO
PUR DATE
GRANT
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

24 CG G06 490

Anh
GLURP-Generalized Language for Understanding and
Responding to People. Information System for
vocational Decisions.
Harvard Univ., Cambridge, MISS. Graduate School of
Education.
Office of :ducation (DHEW), Washington, D.C.
PR-29
BR-6-1819
Jan 70
OEG-1-6-061619-2240
137p.

EjRS Price MF-$0.65 HC-$6.58
Career Choice, *Computer Assisted Instruction,
Educational Technology, *Infomation Systems, *Man
Machine Systems, 40ccupational Guidance, *Programing
Languages, Programing Problems

GLURP (Generalized Language for Understanding and
Responding to People) is a mid-point version of a script-writing
computer language which had been intended by the developers of the
Information System for Vocational Decisions (ISVD). Because ISVD
aimed at allowing the student user to control the order and quantity
of data flow (in an English language context) to the console certain
requirements were demanded of the author language. This paper
describes: (1) the current status of ISVDis author language (GLURP1;
(2) its alaptation to machines other than the RCA Spectra or IBM 360
on which it con presently be used; aad (3) some system and language
problemn which were not solved due to insufficient time. Other
computer languk;es used in constructing OLURP are discussed in the
appendices. (TL)

N
00

N

O

INFORMATION SYSTEM FOR VOCATIONAL DECISIONS

Project Report No. 29

GLURP uENERALIZED LANGUAGE for UNDERSTANDING

anu RESPONDING to PEOPLE

Ann Taylor

This paper was supported in part by Grant No. OEG-1-6-061819-2240
of the United States Off%_co of Education under terns of the

Vocational Education A.:t of 1963.

Graduate School of Education
iia!ver4 University

January 1970

priatim
IDuCATIOigNtiPAPPi
Orvct OP IDuCATIO4

- s NAS ?W. Aux")
P-PC,..t' 4P-t rEcc rA C. ;,,, e.-, P,C,N

%- .P.APPPP L,

PA* .%P C

GLURP -- GENERALIZED LANGUAGE for UNDERSTANDING

and RESPONDING to PEOPLE

GLIW' is a mid-point version of what we set out to accomplish as

a computer language for social science/educational anlications of the com-

puter. The aim of the ISVD project has been to allow the student user to

control the order and quantity of data flow to the console, but still in

an English language context. The 1SVD author language, then, must be able

to accept student input, convert is into information to the script, which

then sends to the student appropriate data from the data base for the stu-

dent to convert into information. This is dfferent from the usual CAT

language, in that the student is never "right" or "wrong" -- indoad, his

state should be described as "curious" X' "fascinated". Ai o, other CU

languages have their data preset in the text, following a preset v:eer as

in normal cla:,..room presentation c.kt without a question period). There

is usually no provi-',n for random access of data. Most teaching languages,

then, are really le-curing or drill-and-practice languages.

in our investigations we discovered two languages, each of which

was capable of one of our main objectives. ELIZA (see Appendix B) empha-

sized the understanding by the script of what the student was tryinA to

say. TRAC* (Appendix A) emphasized the ability to convert English input

into information usable by the script. Combining these two languages with

a random access data rostfne (RASM/DASM) gave us most of the language cap-

abilities required, but did not suggest a homogeneous format for the author

language.

Vtat we have accomplished in our allotted time, then, could be

carried on in one of two ways: the system could be taken as is (or with

minor interface modifications) to be used on an EGA Spectra or IBM 360

machine, or the whole thing could be re-written for auother rachine In

the second case, I would strengly suggest that the heirs of the system

study what we have done and make an attempt to evulve the language and

data access routines closer to the ideal before starting the cading.

The rest of this paper, accordingly, will be in three parts:

1) a description of GLURP as it exists, 2) a description of how to adapt it

to another BAL-oriented machine, and 3) some problems we would have attempted

to solve had we had more time.

IRAC is the trademark of Rockford Pesearch Institute, Inc., Cambridge,
Massachllsetts, for its string handling language.

-2-

I. A DESCRIPTION OF GLURP AS IT NOW EXISTS

The basic control mechanism for GLURO is the SCRIPT, which is,

in well-written scripts, controlled by the student at the console. All

data, including scripts, are accessed by specifying the name of the file,

the name of the record within that file, and the name of the attribute

within the record. All of these names loos rather like English in the

hope that key words used by the student may be used directly to seek in-

formation from the disc.

A script rasides oa the disc in one rf tae two script files

(SaIPTSA and SCRIFTSB) and is accessible by ncme through the HASM rettine.

The script names are reccrd names to HASM and the step numbers are attri-

bute names.

In the existing system, all script names have no embedded blanl.s

1,ecause of the way the TRAC "pop-top" function works, and the fact that

PT is used extensively in linking from one script to anc:hcr. More about

that ia section III.

GLCRF sets things in motion by calling for the first step of the

LOGIN script. This script iF responsible fc.r identifying the student and

for (tiling HASM to bring his personal files into play. See document on

script network for furthEr description of script control.

The script is read !n, step by step, interpreted and executed.

Some steps will cause the secuential interpretation step to In altered and

co'.trol restarted with a ntw script and/or step.

Each step consists of one of the two tipia of GLURP statements,

IRAC statement or a non-IRAC statement. A TRAC statement (which begins

with a "4") may lead to a vtry complex set of operations, whereas a non-

TRAC statement (not begirling with a "0") usuelly refers to a rather simple

suet of o2eration. The exception to this is the non-TRAC "DECOMP" state-

ment which is actually a blend of ELIZA and TRAC.

1. A BRIEF DESCRIPTION OF TRAC

A basic unit of TRAC is the "FUNCTION". A function describes

something the machine should do. A function can be recognized as something

that begins with the tuo characters

-3-

and ends with the character

The function is broken down into parts called "ARGUMENTS", which are sep-

arated by colons. Here is a TRAC function

0(PS:HELLO THERE)

It has tao arguments: PS and HELLO THERE.

The argumont of a function may be or may contain yet another TRAC function,

which in turn may contath a TRAC function, etc. A combination or series

of functions or things to do is called a "PROCEDURE". A script is a GLURP

procedure, consisting of several steps of GLURP statements. This is a TRAC

procedure

#(PS:0(MESSAGE))0(G0:010.00)

The words "STRING" and 'LIST" are used often in TRAC and GLURP. A string

is any sequence of kha,acters, be it a sentence, a word, a paragraph, a

function, or a GLURP Aat,ment. A list is a series of words put together,

separated by blanks (a "WORD 'IST") such as

doctor lawyer indlan chief

of by :0MASS (a "RULE LIST"), such as

0 YES 0, 0 OKAY 0, 0 SUPPOSE SO 0

Lev. us leave it for now that such things exist; the use of them will become

clear as we progress.

When dealing with a computer, we beep data in tvo types of storage

areas. Most of our data is on the disc. It trkes a certain :mount of effort

for the machine to get material off the disc, so as much as possibl. it likes

to keep things closer at hand in "core storage." before the data can be

used it mar be brought into cote storage. We'll talk about that later.

But no matter where the data is stored, the script vriter mat pus; it there

explicitly before he tries to 4Se it, or know that someone elsu has put it

there for him. You cannot use a string that iu not there. Let's go back to

our firqt example.

0(PS:HELLO THERE)

If we look up the PS function in Appendix C, we find that it is

the "print string" function. It has two arguments, and will print the sec-

ond one on the teletype (or CRT, whichever you have). All the data we

need, in this case, is right in the functOn. Suppose, however, that you

4

-4-

had a big long paragraph of material to print, and that you wanted 'o refer

to it in several different places. Instead of writing it all out .ach time

in a PS function, it would be nice to tell the machine what the big long

message is, and then tell the PS function to use that previously defined

string. We do it this way:

C(DS:MESSAGE:BIG LONG MESSAGE)

This stores away in core storage a string by the name of MESSAGE whose con-

tents is the BIG LONG MASSAGE. (see Appeadix C, DS function) Now we can

refer to this string t any time with the notation

#(MESSAGE)

This should be read "the contents of string MESSAGE." As mentioned above,

the argument of a function may in turn be a function, so we may write

0(PS:0(MESSAGE))

which may be read "print the contents of the string MESSAGE." The result of

using this function would be to have the text

BIG LONG MESSAGE

typed on the teletype (cr CRT).

Note that by stating a string name rather than a TRAC funcLicni

cane as the first argument of a function, we can cal] c string out of care

storage. This means, of coarse, that we must not give a strire thm same

name as a function name. We defined a function AS a statement of something

the machine should do. A function may do any combination of these types

of things:

1. Put sot thing or get something from external sources (disc

or console).

2. Change or manipulate strings in core storage, and/or

3. Perform a calculation which results in an answer.

If a function performs a calculation which results in an answer,

it is called a "VALUED' function; otherwise, it is called an "UNVALUED"

function. When a function has a value, it replaces itself with that value

In the evaluation of a procedure.

For example, the functiLl

i(MESSAGE)

in the procedure

0(PS:i(MESFAGB))

-5-

has the value

BIG LONG MESSAGE

!Awn the procedure is being used, then, this function replaces itself in

the procedure and leaves

#(FS:BIG L6NG MESSAGE)

The function is re-evaluated in respect to the surrounding or "deferred"

function, and the PS function is carried out. None of the functions we

used, however, changes cora storage in any way, so the string MESSAGE re-

mains unchanged in core. If a functic71 is unvalued, it does its designated

task and then disappears from the procedure being evaluated. To understand

thin better, we reed to understand something of how the TRAC interpreter

behaves.

In effect, what happens is that TRAC scans a procedure from left

to right until it finds a right paren. At this point it scans backwards

to the last #(configuration and analyzes the function found within. The

value of the analyzed function, if any, replaces the function in the pro-

cedure to analyze any further functions. If argument 1, the function name

or string name, does not exist, nothing happens and the function is erased.

If tt,e entire procedure is scanned and no TRAC functions remain, a new

procedure is brought in from the next script ate; and the process begins

all over again. For example, let's take the procedure

O(DS:COUNT:1)4(PS:0(AD4(COUNT):1))

The interpreter scans along until it finds the first right paren. It then

proceeds to evaluate Ole function

0(DS:COUN2:1)

When it is finished with this function, a string has been set up in cote

storage with the name COUNT and contents 1. According to the description

in Appendix C, DS is an wlvalued function, so it now erases itself from the

procedure leaving

f(PS:4(AD:f(COUNT):1)

The first right paren this time leaves us just after the word COUNT, so

the interpreter picks out the function

f(COUNT)

This function replaces itself with the contents of string COUNT in the

-6-

procedure, leaving

0(PS:0(AD:1:1))

Further scan leads us to the function

#(AD:1:1)

This function replaces itself with the value 2. Note that none of the

functions used change core storage, so we still have Etored a string called

COUNT with contents 1. Now we have left the procedure

0(PS:2)

and "2" is printed on the teletype (CRT).

Sometimes it is handy to store some strings that are TRAC functions

or procedures in themselves. Bu: if we were to try to do so in this fashion

0(DS:ROUTINE:(PS:HELLO THERE))

we know from the above example that this world print HELLO THERE oa the tele-

type and refine a string ROUTINE with no contents at all. For this reason

TRAC uses parens as protectors for things it doesn't want to have analyzed.

We would define the string this way

0(DS:ROUTINE:(0(PS:HELLO THERE)))

The scanning routine finds the left pan.a not preceded by a 0. It now skips

to its matching right paten, saving but not analyzing the material in betweer.

In this procebs, it strips out the protecting parens. When we call back our

string with the (.action

0(ROUTINE)

the function Is replaced by its value

0(PS:HELLO ThERE)

which is further scanned to produce the message HELLO THERE on the teletype.

But now suppose that we wanted to print out the contents of the string

ROUTINE. If we tried using the procedure

10(PS:0(ROI:TINE))

we would receive the message

HE.1.0 THERE

Again, TRAC has provided for this end has a way of saying "evaluate this

function, but if the value of the function is in turn a function, do not

evaluate it further." We do this by typing

f(PS:00(ROV.TINE))

-7-

The string ROUTINE is evaluated once to produce

#(PS:0(PS:HELLO THERE))

but, silce we used the function sign 00, does not evaluate it further and

goes directly to its surrounding function PS. The message on the teletype

is now

0(PS:HELLO THERE)

which is the contents of the string ROUTINE.

In Appendix C, the various argu-ents of a function are described

by various letters, depending on what type of thing the argument must be.

The first argument of a function is always a twoletter function code. telling

what the function Is, and should be written just as it appears in the des -

criptiLn. The reet of the arguments should be interpreted as follows:

X means the argument must be a string. This, of course, can be represented

by a valued 'RAC function or procedure. This may also be no characters

at all if this is logical at the time.

N repreaents the name of a string. Again, this can be represeted completely

or partly by a valued TRAC function.

D represents a number, .olth no alphabetics or decimal point included. h

negative number is preceded by a minus sign.

B represents a Boolean string. See BA function in Appendix C.

represents either s string, as in X, or a TRAC procedure or routine

surrounded by patens. In the ISVD system it can also be a step number

of the current script, preceded by an asterisk, as in

#(EQ:,(NAME):HENRY:*100.00:0.200.00)

According to Appendix C, this says "if the string NAME contains the word

HENRY, go to statement 100.00, otherwise go to statement 200.00." This

could also be written

P(EQ:0(NAME) HENRY:(0(0:100.00));(0(G0:200.00)))

which reads exactly the same. Note the patens around 2 Arguments that are

TRAC functions, an. remember what would happen if those patens were not

there. It is possible, however, that the Z could be a simple string

O(AD:O(EQ:0(COUNT):3:1:2):1)

This says, if the contents of COUNT is 3 add I and 1, otherwise add 2 and

I.

-8-

2. A STUDENT COMMAND LANGUAGE

Pincus, Yee and Little proposed several additions to the script

software. These serve the functions of (1) giving the studs,nts control

over the diraction of the script flow, and (2) makiag 0,ese an automatic

°art of the KEYBOARD statement, so that each script does not have to check

for occurrence of the student commands.

/s the student enters the system, he is givea an INAtODICTION

script (ac contrasted to the ORIENTATION script) that explains the me,:han-

ical use of the machine, and also certain commands he can u!..4., .1t any time

to change the subject, ask questions of the data base, etc. The ::todent

commands ara:

@STOP This causes the script to utop whatever it is doing and to return

to the latest named STOP linkage point. Script writers shoule anticipate

the use of this command by inserting at appropriate points the place a

student should return to .4 he should suddenly break out of a script in

this manner. Usually, a stop return point will be a point her he is

given a choice of several different activities. He may then make a choicc,

try that activity for a while, then say @STOP because hr: would rather choose

something else to do.

ggvir This causes immediate ttansfer to the QU/T script, which asks him

if he wants a summary of his activities to date. He is given a summary or

not, as he chooses, and the machine prepares for a new user.

@VATA Sends control directly to a script giving him direct access to any

data base. At this point he may ask for specific pieces of data at will

until he types @STOP, wheat he is returned to the CRT statement immediately

precedirv4 the KEYBOARD statement at which he typed @DATA. Note that this

is a non-typical use cf @STOP, in that the author need not worry about this

c:cIrrence . . . the GLURP interpreter will take care of it automatically.

@HEP I! the student doesn't understand a question or for some other rea-

son doesn't know what to respcnd, he types @HELP, whereupon he is sent to

A section of the script which further explains what the author was trying

to say. It is the responsibility of the script writer to specify, on the

KEYBOARD statement, where the student is to be sent if he types FHELP. If

no help has been specified, the student is told "No hint has been provided.

Answer the best that you can."

@SUIIMARY Sends the student to the SUMMARY script, where he is given a

summary of h:' activities to dste. As in @DATA, when he types @STOP, he

is rettrned to the CRT statement immediately preceding the KEYBOARD state-

ment at which he typed @SUMMARY.

3. WRITING A SCRIPT IN GLURP

In GLURP step numbers have the format XXX.XX, where the X's are

digits. The maximum step is 999.99. I suggest that scripts be initially

written with gaps between the step numbers to allow for future expasion

of the scripts, since these numbers must be in order of increasing value.

A script, then, consists of a series of GLURP st..tements, each

beginning with a statement number, and each consisting of either a cu.=

statement or a TRAC statement. Note, however, that these two rt(teme.t

types cannot Ls mixed in one statement. In any case, a stateient cannot

be longer thin 255 characters.

There are currently four GLURP functions that are non-TRAC:

1. CRT or CRT+ or CRTC

2. KEYBOARD

3. DECOMP

4. GOTO

I hear cries about the hard copy or printer device. Unfortunately,

this will be used in the following way: If the btudent wants a printout

of the current contents of the CRT, he pushes the "hard copy" button and

waits till the pri.iting is finished before he continues with the interaction.

Formatting charae.ters for the CRT (bee CRT description) will have no effect

on the teletype, . . . an importteat consideration if you ar° planning the

transfer of h table, formatted list, blinking characters, etc.

This is not the only button cLe student will faced with: in

order tt' he P. slide shown, rot only must there be a SLIDE command in a

CRT statement, but tha student must be instructed to push the "run" button

in order to get it to show. There was some indication trots the Senders

Teeple that they could rig things so that the computer could push the "run"

button, but that isn't the way it is now.

Here ure descriptions of the GLURP statements in full.

CP.I or CRT+ or CRTC

CRT causes the following text to be displayed with carriage returns inserted

-10-

as close to the end of the maximum sized line as possible. The text will

start in the upper left hand corner of the screen, and all previously dis-

played miterial will be erased. The text may not contain the special char-

acters > or except in the case of a slide command, and it rust be 250

characters or less.

CRT+ causes the following text to be added to whatever is currently ol. the

screen, starting with the next available line. Again, the carriage returns

are automatically inserted at the end of the 64 charact.n. line. The max-

imum combined length of the characters of the screen is 768 characters, in-

cluding ant' concur,,ent slide commands.

CRTC causes material to be added to whatever is on the screen beginning at

the next available space +1.

The Sanders 720 formatting characters are multipunched in one pos-

ition;

Voik' (home) causes the following text to start in the upper 'left hand

corner of the screen. Previously displayed text is NOT erased.

X'890 (cleat, or initiate) eruset the contents of the screen and acts

as a It character.

)05/,' (carriage return) causes the following text to appear on the next

available line, starting with the left-most character.

r'4A' (horizontal tab) causes four blanks.

X'4F' (vertical tab) causes the following text to start four lines down

from its current position anu at the left-most position tf that line.

(start blink) causes the following characters, up to the clear blink

format character, to blink as they are displayed. This is a good

substitute for qnderlining.

X'70' (clear blink) causes the following text Not to blink.

N.B. There is no timer associated with the CRT. This mcanc that if

the CRT statements are presented in a series, the text win flash

by at faster-than-readrle speed. For this reason, each CRT or series

of CRT and ite associated CS7+'s must be followed by a KEYBOAFD afate-

ment. the script will then pause until the student has finished

reading the message and pushed "send block."

The slide command is actually a specialized CRT+ commanel. The characters

that specify the slide sequence are sent to the CRT .pert it is saved but

11

not displayed. (It is printed in the case that the student requests hard

copy, however!) The student must then be told to push the "run" button to

get the slide projector to search the screon for its command. The slide

commands cause the specified slide(s) to be shown for the specified length

of time. The exact format for a slide designation is

\SOX/MSS/NNN/NNNMA

where X is the projector number (1 or 2), M is the number of minutes the

slide should be shown, SS is the number of seconds the slide should be shown,

NNN is a slide number. The asterisk marks the end of the command. If MSS

is 000, the slide wi:1 be shown until another slide replaces it, or the

slide protector is turned . The projector is turned off with the instruction

\SOX//////*

If a series of slides are to be shown, say slides 5 through 10, for 5 seconds

each, the instruction vnuld be

\SBX/005/005/010///A

After this series is shown, the projector will look for rnother command with-

out the student pushing the "run" button.

If one onlu slide is to be shown, say slide 7 for 1 minute ands seconds, the

instruction would be

\SOX/103/007////*

If there is some text that you wish displayed only while this particular

slide is being shown, the format is

\SOX/103/007////*(THIS IS JOHNNY BEING A DOCTOR)

The text must be included In the maximum number of characters thit can be

displayed at once, but it will actually be displayed only when slide 7 is

being displayed.

KEYBOARD

Prints three asterisks in the student response area (block 1, last

256 positions of the CRT) and reads the student response. All responses

are automatically chocked for student commands (leading lr TRAC (leading

I).' A branch point on the KEYBOARD statement

KEYBOAID:XXX.XX

indicates which statement the student should be transferred to tf he types

@HELP. If the biAnch point if ,fitted, and the student types @}i ?LP, he

will be infotmed that no hint hag been provided.

-12-

DECOMPrule list:stepno list

Analyzes the last student response. This is probably best explained

by example. Let's s : you were interested in finding out if, at the last

KEYBOARD statement, the student answered "yes". You would write

DECOMP:YES:004.00

This says, if the last response was exactly "yes", transfer to statement

004.00, otherwise go the next statement. The above example has a rule list

with one item in it -- YES. Usually, though, you would be more interested

in whether or no'.: the student used the word "yes" with accompanying text.

In this cas,! you would write

DECOMP:0 YES 0:004.00

This says if the last response was any number of words (including no cords

at all) followed by "yes", followed by any numbe of words, transfer to

statement 004.00. This is still too exact, hoy.-Ner, and what you rea)Jy want

to know is whether or not the student answered in a positive fashion. In

this case you would previously have had a statement

D(DS:POS:0 YES 0,0 OKAY 0,0 THINK 50 0, etc...)

This defines a string which is a "tule list" . . . a series of decomposition

rules to be referred to in a DECOMP statement. Then, when it came time to

analyze the response, you would write

DECOMP:(POS):004.00

This sayz;, if any of the rules in the POS string apply to the last response,

go to statement 006.00.

Now let's try to see if the responses were positive, negative, or unsure.

You could write

DECOMP:(P0S)',(NEO),(UNSURE):004.0):006.00:030.00

This says if the ans er is positive, go to statement 004.00, if it is nega-

tive go to statement 006.00, and if it is unsure, go to statement 030.00. We

can use the strings POS, NEC, and UNSURE because they are permanently de-

fined.

Now suppose you want to use a rule list only once, and don't want to go to

the bother of defining a. external string. Say, for example, if the student

types A, B, or C, you wart to go to statement 006.00, but if he types D you

want to go to statement 010.00. The statemet is

IACOMP:(*A B),0:006.00:010.00

-13-

The element 0 A B C) is an "internal word list." A word list is different

from a rule list, in that each item in the list contains only one word (no

phrases or O's), and that, in DECOMP statements, it is interpreted to mean

"any one of these things will do." It may be the case that, during the ex-

ecution of a script, you have collected from the student a word list of,

say, his interests. You have called this list INTERESTS, and have collected

it with the aid of TRAC functions such as NT, NB, etc. (see Appendix C)

It looks like this: SKIING SWIMMING READING MATH. Now you want to sty if,

in the last response, the student mentioned one of those interests. You

would write this

DECOMP: 0 (/INTERESTS) 0:004.00

This tells the machine that the list involved is a simple list, not a col-

lection of rules. If the student input is any number of words followed by

either SKIING or SWIMMING p READING or MATH, followed by any number of

words, the rule fits. This time suppose that ycu want t. check for a pos-

itive response, but if the student says "I think so," yov. want to consider

that an unnure-type response. You can still use the saw POS string, but

write hrrnch points directly in the call for an external rule list. An

asterisk says, if everything matches so far, keep going with the rest of

tle rule; a statement number says if everything matchers this far, go to

this statement without trying to match t'e rest of the rule. If you have

put neither asterisks or statement nuAbero as in (POS), it says if every-

thing matches till hero, keep going with tLe rest of the rule. In other

words, it is as if you had written (POS:*:*:*: etc) 'ior example,

DECOMP:(POS:*:*:J10.00:etc...).004.00

this says, apply the POS rule list to the response, and if the third rule

applies go to statement 010.00 othetwise if 4 rule fits go to statement

004.00.

to be even more elaborate, let's say iou waat to analyze e vesponse, buy

you want to make sure there isn't a "not" or "don't" or otter negative

word that would reverse the meaning of the response. You wtu'd define s

rule string

,(DS:NOT:((NEG),0))

Note that the second rule of the list allows for any response whatsoever.

Nov you use it this way

1}

-14-

DECOMP:0 (N0T:013.00:*) 0 PLAY 0 (NOT:013.00:*) 0:008.00

This says, if the response has negatives in it, go to statement 013.00,

otherwise, if it has the word "play" in it, go tc- statement 005.00, ani if

none of these fit, go to the next statement. Note that rule lists may

refer to other rule lists, which may refer to other rule lists, etc.

GOTO XXX.XX

Transfers control to the design-ated statement number.

4. GETTING AND STORING DATA FROM THE DISC

Every piece of data in the system is labeled by a three-part name:

FILEIRECORDrATTRIBUTE

FILE refs to one of the 9 data bases. The user data file is a personal

file, containing information about the current user, his progress through

the system, information gathered from him b; the system. The use of the

TRAC LI function ,:auses the current user's private f le name to be stored

in a string called NICK while he in using the console.

RECORD refers to a subsection of a file. Its the occupation or military

file, RECORD would be a job title; in Education it would be a school name,

etc.

ATTRIBUTE is a subdivision of RECORD, such as SALARY or RELATED CAREERS

under DOCTOR, or TUITION under HARVARD.

The TRAC format for retrieving data is

f(FR:FILE:RECORD:ATTRIBUTE:Na)

for example

f(FS:EDUCATION:HARVARD:TUITION:VAR1:*020.00)

This would retrieve the tuition for Harvard and store it as a string with

the name VAR1. If the record cannot be found, control is transferred to

statement 020.00.

Should you wart to simply have the piece of data inserted into some text

you would write

f(PS:text f(FR:EDUCATION:HARVARD:TUITION::020.00) text.)

leaving out the string name parameter, but not its colon. In this case, if

the data cannot be fount, control would go to statement 020.00 without any

printing having occurred.

The 1RAC format or storing data is similar.

-15-

0(SR:FILE:RECORD:ATTRIBUTE:SOME DATA:Z)

were SOME DATA is the actual thin; you want to store under the specified

three-part name.

At thin point it would be useful to become familiar with two more TRAC

functions, dealing with the student's last response. The first of these is

#(CK)

This is the "call keyboard" function, and it has the value of whatever the

student typed into the mazhine last. If.' In answer is to be saved for use

further on in a script, you would do it with a

0(DS:ANSWERO(CK))

kind of statement.

The other function is

00,S:D)

This it the "keyboard segment" function, and its value is the Dth segment

of the student response, according to the last DECOMP rule applied to it.

You will recall that D stands for a number. For example, the rule

0 BECAUSE I 0 SO 0

applied to the response

BECAUSE I REALLY DON'T THINK SO AT ALL

would result in the following segments

Segment 1 nothing
Segment 2 BECAUSE 1
Segment 3 REALLY DON'T THINK
Segment 4 SO

Segment 5 nothing at all

Either of these functions may be used to specify the data in the SR segment

0(SR:FILE:RECORD:ATTRIBUTE:0(1.1):Z)

or f(SR:FILE:RECORD:ATTRIBUTE:0(KS:D):2)

Sometimes asking for a specific piece of data is not enough There is also

the idea of asking for the names of all those records in a given file that

have a certain description:

O(FR:OCCUPATIONS:WORK OUTDOORS:LIST:TEMP:040.00)

This would put into TEMP a list of those names of jobs that require working

outdoors. Note that work outdoors is an actual record name, and script

writers rust be sure that such a record exists before they request it. If

you expect a rather long list, say up to 853 job titles, you will probably

-16-

want to get a coded or "BOOLEAN" version of the list.

#(FO:OCCUPATIONS:WORK OUTDOORS:LIST:TEMP)

In the data base, the record WORK OUTDOORS, for example, (or any record

that is actually a list) is represented by 853 digits that are either 1

(if outdoors work is required) or 0 (if outdoors work is not required):

00011010011101010...

where each positicn represents a job title to a data base decode table.

In other words, the system knows that the first position represents as-

phalt burner, the second candle snuffer, etc. Having gotten the list, you

might then see how long it actually is with the CE function, for example

0(CP:0(CB:LIST):10:*040.00:*050.0n:*060.01)

which says compare the count of bits in strihg LIST with 10, and if it is

less than 10 go to statement 040.00, if it is equal of 10 go to statement

050.00, and if it is greater than 10 go to statement 060.00.

At statement 040.00, you might want to simply print the list:

O(DC:OCCUPPTIONS:WORK OUTDOORS:TEMP2)

0(PS:O(TE).P2))

but at statement 060.00 you might have the routine

060.00 f(PS:THERE ARE f(CB:TEMP) JOBS ON YOUR LIST. WOULD YOU LIKE TO

SEETHE FIRST PART OF THIS LIST?

061.00 KEYBOARD

062.00 DECOMP:(PC5):064.00

003.00 GOTO 100.00

064.00 0(DC:OCCUPATIONS:WORK OUTDOORS:TEMP2))

0(PS:0(TEMP2))

etc.

Perhaps, as in the preference scripts, it would be useful to combine several

of these lists from the data base and get the names of all the things that

appear on all of the lists. For this we have to use Boolean logic, but in

a very simple way.

There are four functions we need for combining Boolean lists. These are

"and", "or", "exclusive or", and "not".

"AND" is the function that determines those items which are on each of two

lists. In TRAC it is

1(BA:Nl:N2)

-17-

which says, compare all the items in list Ni and list N2 and put all those

items that are on both lists into list Ni. This looks very much like the

"compare for equalities" TRAC function, but there is cne very basic dif-

ference: "Compare for equalities" operates on a list of English words,

whereas "Boolean and" operates on a binary code that must be interpreted

by a decode table to find the English words it represents. This is also

true of the rest of tha Boolean functions.

"Boolean or" determines all those things that are either in list Ni or in

list N2. "Boolean exclusive or" determines those things in list Ni that do

not appear on list N2 and those things in list N2 that do not appear in

list Ni. For example, suppose we had two lists that were coded represen-

tations of

LIST1: ABCDEHNOP
and LIST2: MNOPXYZ
If we applied the Boolean "and" function, we would have the list

LIST3: HNOP

as a result. If we applied the Boolean "or", we would have

LIST4: ABCDEHNOPXYZ
and the Boolean "exclusive or" function would return the list

LISTS: ABCDEXYZ
The Boolean "not" function gives us a way to invert the sense of a list.

For example, if the data base contained e list of occupations requiring union

membership, and you were interested in a list of jobs that did NOT require

union membership, you would apply the Boolean "not" function to the first

list, and have the second as a result.

In order to get these Boolean coded lints from the data base, we use the

function: FO

0(FO:OCCUPATIONS:UN:ON:LIST:*003.00)

This puts the coded information in string LIST.

In order to decode a Boolean coded string, once it has been operated on, we

use the function:

S(PC:FILE:TABLE:N)

See HASH /DASH write-up for data available on ISVD systen.

5. COMMUNICATION BElVEEN SCRIPTS

There are two main linkage strings in the system, LINX and STOP.

-18-

A return link, or a STOP return point, is set up with the "new top" TRAC

function:

#(NT:LINK:THISSCRIPT 006.00)

Or ii(NT:STOP:THISSCRIPT 007.00)

A script wishing to do a "return", uses this instruction:

0(XQ:0(PT:LINX):,(PT:LINX))

which is, in this case, the same as

0(XQ:THISSCRIPT:006.00)

which say&, send control to (execute) script THISSCRIPT, statement 006.00

If the script is to branch off to another one never coming back, the in-

struction to use is

O(XQ:INATSCRIPT)

to start at the beginning, or

f(XQ:THATSCRIPT:005.00)

to start at statement 5.00

If the script is to branch off to another one, expecting to return, the

NT function should be used before the XQ, to set the return Foint.

Scripts that define strings should eliminate these from core before trans-

ferring, unless these strings are to be used by the next script. This is

because space in core is rather limited, ond only that material that is being

used should be kept there.

6. PERMANENT FORMS

Because of space limitatiors in the BTSS swapping area, we put some

commonly used forms in resident storage, where one copy served all users.

Although this eaves space in user core, these permanent forms are restrictel

in that they may not be redefined or deleted and the forms politer cannot

be moved. These forms are described in Appendix D. See comments in section

III of this report.

7. A DYNAMIC DESCRIPTION OF TRAC CORE STORAGE FOR PROGRAMMERS

For those using the existing program, the GLURP listing itself

and tts flow charts explain what goes on in detail. For those who will

be re-coding the program, a description of the TRAC storage management

scheme as developed by Mooers and Deutch and others will be of interest.

I found it rather neat compared to other systems which rely on myraid point-

ers to pieces of things and periodic "garbage collections" to retrieve

space in core.

Let's return to the TRAC procedure

#(DS:COUNT:1)#(PS:#(AD:#(COUNT):1))

and trace the position of thinga in storage as it is interpreted. The areas

we are interested in are the P, or active/neutral buffer, the F, or forms,

buffer, and the S stack. PL, FL and SL mark the ends of these buffers,

while registers RWN, RY2i, FN and RSN point to the current position being

referred to in these stacks. In TRAC convention, the pointer to the end of

a string or a stack of other pointers is also used to point to the beginning

of the next string or stack of pointers.

In the beginning, then, the buffers are empty with pointers point-

ing as shown:

P PL

T

RWN
1

RPN
SL

1

RSN
I

RATBt

FL

FN

Routine INI discovers a TRAC type CLURP statement, moves it into the active

stick, and adjusts RPN:

P

F-
t

RWN1 RPN

RWN1

PL

6(DS:COUNT:1)0(PS:0(AD:O(CO0NT):1)1

The interpreter no begins its scan at the position indicated by RPN, put-

ting non-syntactic information in the neutral stack and pointing to the

removed punctuation with pointers in the S stack. First it finds the

HO(and marks it in S:

RPN

PL

DS:COUNT:1)0(PS:1(AD:O(COLNT):1))1

-20-

S SL
RATB1 WN

RATB
2

RSN

The first three S entries are for resuming scan after the function just found

is evaluated. Entry 1 marks the place in the neutral stack to which the

value of the up-coming function should be moved, or ,where the neutral stack

marker should be if there is no value to the up-coming function. Entry 2

indicates that the deferred function is active when the scan resumes for

that function, and entry 3 points to the beginning of the stack of pointers

for the deferred function. These become more useful in the case of nested

functions, a& we shall see later. RATB is now set to its new beginning-of-

funclion pointers position and one more entry is made ro indicate the begin-

argument-1 pointer of the current function.

Scan continues to the colon, with non-syntactic characters going

into the neutral stack and the colon noted in the S stack:

P PL

[DS COUNT:1MPS:0(ADJ(COUNT):11

RWN
2

RPN

SL

IRWN1111RATB, IRWNl 1RWN_
2'

RATB
2

ESN

And again:

FEWUNT

47

RWN
3

RPN

S

PL

1),(PS:0(A.0:0(COUNT):1)1

l'IVrtki81114111V4N31

RATB2 RSN

SL,

Now we find a right paren, mark it in the S stack and go off to execute

the coding for primitive DS, which creates form COUNT is forms storage.

The arguments for D9 are marked by the entries in S stack, argument 1 being

21

-21-

from RWNI to RWN2, argument 2 being from RWN2 to PMN3 and argument 3 being

from RWN
3

to INN
4

:

pSCOUNT1
PL

#(PS:CAD:0(COUNT):f9

RWN
4

RPN

RATB11RWNI Rgqi679C614
1

RATB
2

RSN

SL

F FL

L 11p1931111COUNT11

//
FN A B

FUNDS returns to YULTRP, indicating that the function has no replacement

value. Whereupon the interpreter recovers the space in the neutral stack

(referring to entry 1), removes its notes in S stack about the function

just finished, and picks up the rest of the pointers in the S sta:lk to

resume scan of the active stack:

?L
RWN RPN

RSN

RAT B1

PL

if(PS:PIAD:O(COUNT):1))]

SL

In the same fashion we analyze the rest of the functions in the active

stack.

Step 1:

t
IWN

1

PL

PS:0(AD:11(COUNT):1)1l

RPN

-22-

S SL

rWNITTATB, RWNII

t t
RATS

2
RSN

Step 2:

P PL

IPS #(AD:4(COUNT):1) 1

t t
RWN

2
RPN

`cWN1
1

R W13 T N
1

RATE
2

Step 3:

RWN2f

RSN

S L

P PL
ps AP:O(COUNT):1))1

1 t
RWN

3
ION

5 SL

EN T'ATB1 IRWN
1 2
1RWNIIWN

2
I1IRATB

2
IRWN

2 3
Lltitil

1

t t
RATS

3
RSN

Step 4:

'HAD INCOUNT):1))]

t

RWN
5

RPN

SL

IRW241111RAT81 RWNIIRWii2 rKW2 1 FRAT82 R151-2145N---

RATB
3

RSN

Step S and 6:

PL

tADCOUNT

R WN6 RPN

25

-23-

3

Here we finally find a

function. #(COUNT) is

right

WN511(RAT5eg;TAN---

t 1
RATB

4
RSN

paren, which sends us off to execute the

an implied call of

value of the contents of

looks like this:

PSAD

R W N

form CCUNT and has 6 replacement

COUNT. Upon return from the function storage

RWN1 RNICcilIRATB2 RWN
2

RW1151

RATB
3

RSN

PL
1:1))

RPN

SL

J

F FL
1 2 AIB C 1 COUNTil

t'

FN A B

Note that the value of the function f(COUNT) has been put in the active

stack for rescan, since the function was a single sharp, or active one.

As we get to the next right paren the picture is:

P PL

I

57§X511)1

I i

RWN RR'
0

S S!

ril./N iliRATilr
li 1 1 1 2 1 2 7

IRWN liW 11TRATB IRWN IRWN TRWN RWN
8 -1

t
RSN

wh'cn evolver into:

[i51

RWN
2

EATB
3

24

PL

RPN

-24-

SL

RWN I RATB RWN 1/NRY-1
1 1 2

and:

rS2

RWN
9

S

RATB
2

FUN,' 11RATBIIRWNII RWN2fRWN91

RATB
2

RSN

PL

SL

"2" appears en the console. the end of the active stack is found, and

trol returns to 1NT for the next step.

6. AUTOMATIC LOGGING ROUTINES

In order to help script authors to evaluate their scripts . . .

where they are misinterpreted by students, where they fail to respond ap-

propriatel., to ltudents, how they are most often used, etc. . . . we made

use of the existing BTSS lozging mechanise to record certain events on the

"log tape." These entries are made to the log as they occur, with iden-

tification of user, time of occurrence, etc., associated with each message.

See write-ups of BTSS log routines (RCA provided material) and the log

priht routines for more detail.

The call to log a message requires the following procedure: the

2-character s-code must be in location SCODE, the address of the log routine

to format the proper message ...lust be in location CODEGG, and conLW should

be transferred to the adetess specified in SETLOGAD with that address !r1

register 1. The log routines themselves run in P2 so that P1 registers

rerain urdistrubed upon return from a log call. See write-up of ISVD log

routirl for further information.

23

-25-

II. ADAPTING GLURP TO OTHER BAL-ORIENTED MACHINES

1. GLURP INTERFACE WITH 7'.E FITSS SYSTEM

Communication with the BTSS system from a PI prugrnm Is through

SVC's. GLUM- uses seven of these, which must be, either deleted or re-

placed in the transfer to another system.

a. GET and the KEYBOARD routine

Used by GLURP to access material from the console. (We also made changes

to the BTSS console I/O routine itself to fit the Sanders 720 console, but

I'll assum* that the receiving system already communicates with the col-

soles to be used.)

ur is used in the KEYBOARD routine, pre:eded by a PUT with the get bit in

RFLAG set to tell the system a GET follcvs, atd followed by a DELETEF to

erase the message from the system buffers. (eve FAPMAP write-ups.) This

routine is highly specific to the Sanleril 720 and would have to be re-

written for another console.

The KEYBOARD routine includes two other functions besides receiving infor-

mation from the console. It makes note of a possible HELP branch specIfi-

tation, which it stores in HELPPT, and it sets up pointers in PBUFF, point-

ing to each word of the newly received input.

Also note that the LK function uses the KEYBOARD routine to move a message

from core storage into the input buffers and set up the pointers in PBUFF.

If the student types a TRAC statement at KEYBOARD or there has been an error,

entry point KEYS fs used to repeat the GET.

b. PUT and the CRT routines

Used by GLURP to send information to the console. PUT is used in the OUT2

routine, and when entered carries in register 1 the address of the calling

sequence at BUFF3 and described in detail in the FAPMA2 write -up. (RCA

provided material.)

The various CRT routines and the OUT routines do considerable formatting of

the output string to make it acceptable to the Sanders 710 and would have

to be re-written for another system and/or console. Note that OUT2 is

merely an extension of the CRT coding and that the CRT coding follows the

specifications as stated in the language description (section I). PUI is

2.6

-26-

also used to tell the BTSS system to be ready to receive from the console

just before a GET.

c. DELETEF

Used in conjurrAion with GET to tell the BTSS system we are finished with

the first record in the input stream aid that it should be deleted from

the buffers.

d. CEOT

In theory, this checks to see if the student has pushed a "break" or "in-

terrupt" key, in which case we start over again.

e. EOT

Used to transfer control from GLOP to the BTSS system.

f. LOG

Used to send material to the BTSS log routine.

g. SETP2

Used to set GLURP into the P2 programming mode. This was required because

there was no room in the user area to build up a log message.

2. GLURP INTERFACE WITH THE DISC

As it exists, GLURP relies on routine HASM to retrieve information

from the disc. In designing the system, we assumed that the most experi-

mental part of the scftware would be the disc storage and retrieval system.

Therefore, in order to insure that scripts would not have lo be rewritten

to reflect each new data storage scheme, data access would retain symbolic

at the script and GLURP levels. HASH is the routine, then, that would be

re-written as the interface between GLURP and whatever data access routines

were available on the new system.

Unfortunately, the symbolic aspect was not carried out fully.

There are numerovs TRAC functions related to the disr which nifty have to

be redefined and rewritten or deleted in transforming GLUM' into a new

system. This is a simple procedure, as described in the next section.

3. CHANGING OR ADDING TO THE GLURP PROCESSOR

Control comes to the coding for a IRAC primitive with register 15

set as the base register to that coding The urguv.ents for the function

-27-

have been completely parsed into the neutral stack with syntax pointers

in the S stack. (see section 1.7) SN holds the pointer to the last

meaningful pointer in the S stack, which is the last character of the

last argument of the function. If a function has a variable n'imber of

arguments, SN indicates the position of the last argument given in this

particular function call. Otherwise, routines GET, GETF, and GO2 may

be used to retrieve arguments. For descriptions of these and other pos-

sibly useful functions, see listing, "TRAC SUBROUTINES" section.

To add a primitive to GLUM', insert the 2-character mnemonic,

in alphabetic order, in the TESTOR table, and the address to the coding

for that function in the corresponding position of the TESTOR2 table.

The actual coding for the primitive should be inserted in the "PRIMITIVES"

area o; cor.', for base register considerations.

To add A non-TRAC statement, insert the first 4 characters of

the statement name, iu siphzbetic order, in the UNTAEL, with the address

to the coding for that function immediately following. The actual coding

for the statement interpretation should also be in the range of the EASY

base register.

4. STORAGE ASPECTS OF GLURP

The ISVD system is a dedicated one: its who.e computing capacity

is given over to the execution of the sciipt network. This was done mainly

because we were working from the only then-existing 4ectra time-sharing

system which was dedicated to FORTRAN. It was practical, then, to make one

re-entrant copy of the GLURP processor, residing in permanerc, read-only

(storage protected) core where FORTRAN had formerly resided. Its variables

were located, as they had been in FORTRAN, in a sp.cific Jser storage area.

In BTSS this user area is a constant one, the material in it being swapped

in and out as each user's time slot comes around. Other systems will hAve

other ways to manage user areas, but by manipulating register 13, which is

the babe register to the storage area, GLURP may be used in a dedicated

system, with multiple programming or time sharing, or as a user program in

either mode (or combination node).

The permanent forms were created in desperation during a spare

squeeze, aad should be returned to a variable user area if possible. Theft,

`?.

-28-

of course, then become part of a script and are modified with the script as

new networks pre developed. As it stands, the permanent form; are modified

to reflect changes in storage of permanent forms.

5. SCRIPT DEPENDENCY IN GLURP

As it stands, GLURP insists that the first script accessed be LOGIN

(coding at TRACLO), that a script retrieval error be processed by the STOP

script at step 473.20 (coding at INI and locations STENTRY, STCONST) and that

there exist scripts STOP, DATA, SUMMARY, and QUIT. The later requirement

can be changed by changing the UNTABL and its associated coding in the "UN-

NESTED FUNCTIONS" section.

25

-29-

III. SOME OF THE THINGS THAT ARE WRONG WITH GLURP

1. SYSTEM ASPEf'TS

The ISVD system resides either in the wrong software system or on

the wrong machine or both. Had we known the time and effort required to make

MSS behave Ow way we wanted it to, and our inability to really make it

work the way or thought it should, we probably would have started right out

tv write a system from scratch. This is especially true since we were fin-

ally limited to six consoles, which could List as easily have been handled

in multi-programming mode without the inefficiencies of core swapping.

The original rationalization for a big machine was that a) we would

be handling a very large number of consoles, and b) that we would be apply-

ing large statistical programs to the available data. Neither of these

things can be evolved from the system as it stands.

If we were to start over again, I would suggest that the ISVD sys-

tem be evolved as a user program for an existing time-sharing system, allow-

ing the system to be used by the schools for several functions at once. I

would also suggest that the data be made available not only to scripts by

way of GLURP, but to FORTRAN or other computational oriented languages for

use by researchers.

Mooers has suggested that TRAC could serve as the controlling lang-

uage in a multi-purpose time-sharing environment. This may be true, but

developing a system in this way is certainly beyond the scope of an educa-

tional system development project in view of the many usable existing time-

sharing programs.

2. LANGUAGE ASPECTS

We chose TRAC as the basic element of our langlage because, among

other things, it is interpretive and retains a great deal of flexibility

that compiled code canno' provide. Also, TRAC is easier to use and to ex-

pand than other string manipulating languages.

The consequences of the language remaining interpretive rather

aan compiled, however, produces the decided disadvantage of being slow and

space-consuming. We were not able, in the time given, to find a midpoint

between the interpretive and compiled modes in the development of GLURP.

-30-

What we did instead was to create a second, completely separate mode for

some statements that ran interpretively, but in a semi-fixed format and

without macro-expanding capabilities. This added efficiency to CLURP, in

that simple kinds of tasks (CRT, KEYBOARD) could be performed without

lengthy analysis of what was to be done, but does not contribute to be homo

geneous, flexible language.

It became obvious that the answer to all this is that the author

language must be defined with the expectation that it will be at least

pre-processed before execution if not compiled Into machine language.

Every attempt to achieve this, however, mankged to reduce the flexibility

given by TRAC. (see Appendix E)

Another obvious defect in GLURP is that it has no computational

capabilities. Obviously, given a large data base, it would be nice to be

able to apply statist:ical techniques to it. In the existing system not only

does GLURP not lend itself to the handling of arrays, but the HASM/DASM

rcutines do not lend themselves to data scanning and /or selective extract-

ing of data.

We did some work in applying UEATON's work to TRAC, but set this

aside -- permanently it turned out -- while we solved other problems. (see

Appendix F) Had we had space enough, we would have left FORTRAN in the

system and created a GLURP stateent to call it 4n. The problem would

still have remained, however, of ho,,, to built an array in TRAC to commun-

icate to FORTRAN-like programs and/or how to make TRAC-like or FORTRAN-

like programs able to scan the data rase for specific classes of data.

(see Appendix G)

Another defect in GLURP is its complexity from the author's stand-

point. The whole matter of translating what the student wants into a data

access command is extremely tedious and incomplete. The ELIZA method of

determining keywords and subject matter, the English-like data interface,

and the ability of TRAC to create strings from student input are all im-

portant to student control of the system. The author, however, is expected

to anticipate, at every KEYBOARD statement, an incredible variety of pos-

sible inputs and to provide responses for them. The student command idea

was introduced large'.y to help correct this problem . . . it was just too

much to ask an author to check each time whether the student was trying to

31

-31-

change the subject or not. The permanent rule lista (POS, NEG, etc.) were

another attempt in this direction.

I think, given time, we would have looked harder at the ELIZA

scheme of script levels, looking for ways that scripts could build on one

another. DECOMP statements would, ideally, be built dynamically according

to the previous context of student input, and probably in conjunction with

a thesaurus stored on the disc. This means, of course, that the DECOMP

statement would not look much at all like its present form. Linking and

clean-up problems should be more automatic, allowing the author to con-

centrate on subject material rather than TRAC techniques.

In fact, the whole concept of keeping track of what the student

had said, his interests, his choice of vocabulary, of what data he had

actually accessed and what more, therefore he might be interested in, was

left entirely up to the author. This was not our original intention. We

had hoped to find a scheme whereby a context grid of some sort would not

only be automatically made for the author, but would also be used by the

data access routine to anticipate the needs of the student, thereby speed-

ing up response time of the system.

At one point I played with the idea of a script language folloving

the Tiedeman paradigm, whereby a block in the script would have a forTat

somewhat like this:

1. text presentation

2. accept student input

3. GLURP decides whether input is a statement or a question. If it's a

question, go to question answering script and return to step 1. We

keep track here of whether the student has put himself in "e.1-loration"

mode, and That pieces of data he Is requesting.

4. Analysis by author of "correctness" or 'ontex -f i.q A and branch

appropriately.

This led to the idea of the HELP branch on the KEYBOARD statement, and

student commands, but to nothing in the way of "monitoring" or automatic

record-keeping.

The ELIZA language was found to be cumbersome in its lack of)n-

cept of sequential steps within a script. GLURP, on the othar hand, in

being primarily sequential in flow, does not encourage the script writer

-32-

to think it toms of student input rather than author output. Somewhere

is between lies the ideal.

Certain critics have told us the ISVD system sl. uld have been

coded in YORTRAN so that it could be trancferred easily to another machine.

Aside from the obvious lack of familiarity with system implementation behind

this sort of statement, I am glad that we did not do so. I don't think

anyone on the project would consider the current system useful in the real

world except for the lessons we have learned, the advancement we did make,

and the hope it extends that such a system cold be a great contribution

to education and the presentation of data.

We have spent some time working on the problems of understanding

English. More time should be spent considering how to make data available

to students in more ways, and how to make life easier for the author in

terms of autotatic record-keeping.

APPENDIX A

TRAC, A Procedure - Describing Language

for the Reactive Typewriter

Calvin N. Mooers
Rockford Research Institute, Inc.

included with perLissien of the author

4

-33-

TRAC, A Procedure-Describing Language for the
Reactive Typewriter

Calvin N. Mooers

Rockford Petearch inilifvfe Inc., Comb(idge, Mottochustetit

A description of the TRAC (Test Reckoning And Compiling/
longvage and processing olgorithrn is given. The TRAC longuoge
was developed os the both of a software pachoge Int the
reactive typewriter. In the TRAC !cnguoge, one con write pro-
cedures for occepting, naming ond storing ony chorocier strong
from the typewriter; for modifying ony string in ony woy; for
treoting ony string of any time cs cr exec./10ble procedure, or
os o nome, or as text; ond for printing out ony string. The TRAC
lonspcge is baied upon on extension ono generolizotion 10
charocter strings of the progromming concept of the "mocro.-
Tluovgh the obitity of TRAC to accept ond shy* definitions of
procedures, the copabilities of the longvog can be indefinitely
emended. TRAC con hurdle itercs'ive ond recursive pro-
cedures, and con deal with choracter srri-ogs, integers and
Boolean vec.or voriobles.

Prr.fr,.iNt ,1.11Nt l'o- art nr

%.,0,1 F'111.1,r,e,15TY
halm. r rt r,n 11-Fr ht.rIMrfr; AM

1 iv, ttr.1 ;Art t,y ihe KrAaa
,tur le A A.Ar,,ra rer.Irth l'..ire .11trlt; eltftct

Girt - !Iry rh rd tl.r \ r Fr.rce ;')fire of
1(.1' 'Ire 1} - 'Sit 176. ;4;; 1.-1

s --1 1,11 r ry,!, Ntiti-i11 11(40-
II, n'.h I)t

1,111-mr 9 NtrmlAsur 1 Match. !WS .1;-'

Introdmitfors
Thi. Tits(' (Tuvt licckouiug Auld langil3ri

t.t.stent is a 11.4-r linglingy for control rif the ;-ottitoalcr and
stor urge parts of a reArtive ty-ipo%riter t.ysts-as. A rrai Ise
tylicsirit(r vitsioil to be wie Of a towilm-r .1f Scle-
Qpct% rift simill!anvonsiy cr ulerlrrl online by %sire to 3
normoty and computer r rm11r1r v svh1r11 l rnnits lo-al tiola-.
inultilik. a. cess :dtared) olicration. In the plii
ksophs of the neaet;ve 1)-1.0% tin r, the oars at the tyts.
isritcr keyboard is the focal point of the systent. The
eotiniected storage and letnputcr des 'ores are :ons;drred
to be pt.riphcral serN-iie tinits to the i-tarii% typ.%%ritir.

The design ro:ils for thc Tlikr lanvage :aid its translat-
ing w'stre1 included: (il high ra;iatiilit.). in hurling ssith
Laxk .1 forth eninneiti:eattem between a roil :it key
bo,!--LI nod tit.: %ork nn tt,e 1113. 31- to In Mit 111M
In 1111),r i11,4 1111011, tinting the willing
(-.(Ilia mork. 121 roakuyotto rsatIlity in the dr flail ln1
ai,d rfontint)te of r.!oy siIt fin -I prielikr Ir

nklity In do 5tori. ar.d s11,.,11 idi)- tee sin!, 1..
rodlircs to cit. rod the rapahlione-s of Ow
finally (41 invo,invom lArglinco ir,(If no 1)111
it f011!.1 in r iwly treigLt to nth.' -s +.4 ,111,,,
11.-;41, 11,1 td the IlCii,1o!4n nail! h %It n1 t ao

rommrinicaiortg ftf 213

-34-
the language, may be found in a companion paper
The LUX language has now been programmed for several
computers) lit bas shown a high degree of stability during
the pat year of experimental use.

The present True language is machine-independent
and is closed with respect to operations performed tils-sa
sets of characters from a typewriter Leyboard. The pres-
ent language should be precisely designated as "Taac
GI.' r Later versions of TRAC are expected to have sae
ability to deal with strings of machine-coded words and
with subroutines, and will thus be self-implementing.

The Tu Ac language was develoyd after a study of a
nomber of procedure describing languages, but only after
it was concluded that each of these had features which
were believed to be unsuitable- or unduly constraining for
the purposes(contemplated by True. in particular, the
hinguages 1111.1., Ltsn arid COMIT were carefully ex
:mined. Jn bra f, 1P1.-1' appeared to be too closely 011
ruled 10 computer programming. Lisp had sevo.e nstric-
lions due to its "nstomic" symbols, certain uceptual
confusions and too great an oricntatior tr. hernal:cal
logic. ('otter, while suitable in many res; . s, bad the
rigidity ass-wkited will a compiler. Whet e. rk was lxgun

Tu (1960) 11NIC appeared to have the apahililies de
sired, though they were a definite source ion.

The prime stinudus to the present Ttcac language came
from No important unpublished iapens by Eastwood
lout [li] nnd NIcIlroy [a]. The first paper described
a macro asserntly syatorn having runime definition
making and decision- snaking capabilities. The second
pai.er showed how this system could perforn, very general
manipulations on symbol strings. True is a refinement and
extension of the niacin approach of the papers. There-
fore it can he said that the present TRAL system consists
of a Ilia,hineindcpcnfilt language together with a

gem-rah/all macro text processor which runs interpretively
lo provide versatile lit PI action capabilities at MD time.

recut, imdelxudrnth IIIINCIOpCd system by Strachey
rij has it number of nou.rkable s!ini!nrities to Tree,

THAC Syntax

A True string may contain a substring enclosed by a
matching pair of parentheses, such as () where the dots
indicate a string. The matching parentheses indicate the
scope. of some particular action, There are thrtx, cases,

by 4 (), *(. -1 rid ().' The first
two formats indicate the presence ..1 a True "primitive
fmart..ioni." The format () denotes all Tune.
titan," while the fertnat ,*(-) denotes a "r.eutral
fimetor.." This fli51 hid i0T) is clarified below The string
into river to f ilher kind of function is t4..ra rally divided
into suletrings I y rem mss 12, f) ufiere these
st,bsiriags constitute the arguments of the function.
l'aft 1,t1,(c,:4 in I fondat f -) have roughly the same

Tie cIrr.ifr. Are nh. i'41 51 vet P1)P-3,
.1-1r t:rerAt 1 If(tn r '1 resents, 11,0e ;:ygter,-5
:117.:!11.10

7 I,Aper iA A r.viion fo4 .n :21

31 Tr:1.1H.. the 'tap a-r. is" chsoirtsr ie
rrerrurd ,'ra11 f the }.sr, sic,

216 cr,,,,ni.iiirstions of the 4(24

role as paired quotation marks, ,vid, in par:kali:1r, what-
ever string is inside the paired parentheses is protected
from functional evaluntioo.

Tn.&c strings are dealt with by the T1LAC, processor
according to a scanning algorithm which works from left
to right and perf.maiis the evaluation of nested expressions
from 11LS1(k outward. in the expression

1311,31 46()
I 3 1 2

the functions are ev(Inated in the order indium:al. As
each function is evaluated, it is replaced in the Tare
string by the string (possibly null) which is its value.
The evaluation of an active function is followed tinselly
by the evaluation of any function in its value string lira
protected by matched. parentheses. The value string of a
neutral function is not further evaluated.

Ea triples of Functions

An example of the "define string" primitive function is
the expression (dA,A.4,CAT). This causes recording of
the 5.tring CAT in the memory mai places the inside
of The string in a table of contents. The string ran be
called out of memory by the "call" function *
The r Null of the -all function is to place the string value of
the call, namely CA T, the form. r location, of *(del .1),
with an expansion or a dosing up of th- surrounding
strings The call function is ell the class of funriiene,
having a "value string." The define string function is an
example of a fine. lion having a "null %aline"; i.e., no string
is left behind in its place after its evaluation.

Evaluation of the "read string" (un. *(rs) causes
the processor to accept irrit from typewriter. Its
value us the siring as rf ceived from the typc writer inn In n
terminating "meta rliaractrr" taken to
Ix the atsstrophe. The meta character can be chang..1.
The "print string" function A 1.1)4,N) causes Prinlinr nut
of the argument string, hen' represented by the yrtil.ril A'.
It h:,,s null value. (cf1.1
will cause CAT to be printed out.

In the befinining, and at the completion of every proc-
essing cycle, the Tato "'dreg procedure" * (ps, 4 (rs))
is automatically loaded into the True proccs,or. It is

therefore seen that all strings and programs (fTectivily
loaded into the interior of the idling procralure, and fin
therniore, all TRAC et mpiatations are math- on functions
nested within he argument string of some other fun. lion.

TRAC Algorithm

The Tnse algorithm got.t rns the j.rta ;so mar nrr in
which Tyke (press:ens arc SI ;VII 1 , 1 I I t' ,y

the Tnae liter ssor. At thc ta-ginain g. !kr 111119t rf1

string: an' in tic 'a. string" ae-i Its" scaurni g
poiri!rr' points to ',la, lcfun nl r haear lc r string
As (1,:ract(rs have been treated by the scatuitut
they n ay ix, adled to the right ha 01 (Ind of c "neutral
stritur- which is sn f ,035- !rive
h e m hilly i n mol by 0 e algorithm acid are thus teutral,
like alphatoic rtoract(rs. The algorill.:11 folios s.

nillme / ' NtornIwt 3 March 1951I

-35-
1. The character under the scanning pointer is exam-

ined. If ther, is no character left (aetive string empty),
go to rule 14.

2. If the character just t.xarnined (by rule 1) is a begin
parenthesis, the character is Ilelef ell and the pointer is
moved ahead to the character following the firt matching
end parenthesis. The end parenthesis is deleted rind all
liondultited characters passed over (including nested par-
entheses) ore put into the iieutral string without. change.
Co to ride I.

3. If the character just examined is either a carriage
return, a litre feed or a tabulate, the character is deleted.
Co to rule 15.

4 if the character just examined is a ceinnua, it is

deleted. The location foileaving the right -bend character
at the cud of the neutral smug, called the "current Inca.
lion," is marked I. a pointer to indicate the end of an
argument subst ring nod the beginning of a IICW argument
subst ring. Cu to rule 15.

5. If the characte; is a sharp sign, the next character is
inspected, If this is a begin parenthesis, the beginning of an
active function is indicated. The sharp sign and begin
parentlie-:. arc deleted arid the current location in
net Jell string is marked to indicate the beginning of ati
active function and the beginning of an argument sub
string. 'The stunning pointer is moved to the char-act(r
((Mery ing the deleted parenthesis. Co In rule I.

G. If the character is a sharp sign and the next 4 haraeicr
is also a sharp sign, the seenndfollowing character is

inspected. If this is a begin parenthesis, the beginning of a
neutral function is indicated. Two sharp signs and the
begin parenthesis are deleted aid the critrcrit location in
Ile neutral Siring is inarkd to ind ate the beginning of a
neutral fun(lion and the beginning of an argument sill;
string. The scanning pointer is moved to the character
follea leg the deleted part tithesis. Co to rule I.

7. If the r .nracter is a sharp sign, lint r either rule 5 or
fi apphrs, the character is adtl, el to the 'antral string.
Go to rule 15.

S. If the character is an oral pare :thesis, the character
is deleted. The current Ationi in the /Rubel string is
!narked by a lointer to indicate the e ea an :uvula eit
substring and the end of a fund: u. The pointer to the
beginning of the currant fi.n.1!.ti is Low retrieved. 'I lie
complete t of argurncot sulr-r.ngs for the function
have now bassi dcflI1(1). '1 i e anion it licatol for the func-
tion is perfor aids Co to ado 10

0. If the charm t: r re.e4ts the test of none of the rides
2 Ihrough S, transfer the t flame-14r to the right-hand find
of the neutral string and go to rule 15.

10. If the finie,tiou has TA:11 I slug go In rule 1:1.

II. If the fuurSierr, was %n re :ye fIlr,CNATI, the value
sprit g is it serted to 1) ,r 14ft -1 the first un-
scanned eharaoe r nr (i.e 16, 5 V string. T -he sr:wiling
pointer is rose t so as to perint to le location pat reit, g the
first chat:a-tit of the ucw vah e riog lin In rule 13.

12 If the function 0 rural finictron. the
sty nig is inst.itel in the 11rAI ith its first -barac-

Volume 9 ' N"mher 3 ! Mortar I '0'

ter being put in the location !glinted to by the eurriot
begiii-o`function pointer.])elate the aiguinent and fun .-
diem pointers back to the point4 r. Tiii
scanning pointer is not reset. Co to rule 1.5.

13. IN kte the argument and function lioniters back
to the begin-cif-function pointer for the function just
evaluated, resetting the current location to this liennt.
Go In rule 15.

14. lielere the neutral string, initialize its poilliet-s,
reload a new copy of the idling procedure into Cie :olive
string, reset the scanning pointer to the beginning of the
idling procedure, and go to rule I.

15. Move the scanning pointer :dieted In the next.

character. Co to r dle 1.
TLC Tote proces..or will accept any strit.g et symbols.

Nonexistent functions are given a null value. ()milted
arguments are given a null value, while extra arguments
are ignorts1. Omitted right part ntheses trill cause the
processor to I. ;titillate its action and reinitialize itself
at au NIIApCI11.1 paint, chile extra right parentliees are
ignored and deleted at the end of a pone-dun-. %%len the
processor becomes too full, perhaps due to an infinite itera-
tion or rOCIIrsic)11, a diagnostic is tyinal out to iroli4,ite that
fact and the processor is re-initialized Lygniug to rule II.
The break key stops any action and causes re it itializa.
t ion.

The TIIAC Functions

Input Out vt. All functions are shoal, in their lo'llVe
r presentation, 1%$lich is the form most 11(1011 us d. .1s
.11,m11, the argument strings are presumed lint to cur t ;tin
functions or other active waiter.

(rs) "read string" (one argument). (Note the

mncnrnnic for the film-tine, mune is counted as the lie. t
igurnent.) Tire value i.e the string as read foie the tede-

tylrariter keyboard 1111 10 the p(":111 c1 iKrntnIw o of
the meta eliaraeter, which is deleted.

Ai (re) "read eliaraithr" (ore' argutm id'. The value
is the ts-:,t ellarader, ahieh 1113! be any harveter (in-
cluding the meta charin ter) feri keel from pe
tarter.

(etri,X) "change louts- (too argiiiiieill))1 .1 his

null-valued fun((inn changes meta character to the
first I haract(r of the string symbolized IT X. Upon start-
ing, the Tate ,,rroce.--sor is loaded a ith a slaolanl meta
charrxter, usually the apostrophe,

4 (rs,X) "print string" (Ian argurni fits). This null-
valued (mullein prints out on the ti letypea titer tla,
string represented by X.

I)46ric and Free.crenem

4 (df,N,X) "define siring" !thre :trona Tits I. Tin:
is a roill.%-ahird function The string svosl rlirnl Lv "t; is

placcal in storage and is gis In the TIAIng- .1I;)}.r11;7I N
name is pin-cal in a name list or (Alt. of come)

the "firms" in storage. A -form- is 3 mantel Still 6: in

storage. If a form is alrea4ly in storage Oil IF:61 it ,V.
this ferns is e rased. The name N may be a mill still

4 (A ,\-VI,N2.) 'segnatit strimr" (thee or ti

argilica nisi,. This is a cull valias1 fun. lion. .1 lie foie,'

sT4-V
l'ArIrritin,snics l Inn or iI,r f ll 217

-36-

named N is taken from storage and is scanned from left
to right with respect to string XI. If a substring is found
n.atehing XI, the location of the match is marked. The
matching substring is excluded from further action, this
coating tt "segment gap." The rest of the form is scanned
with respect to X1 to create any additional segment
gaps. These segment gaps are all given the ordinal value
one. The parts of the form not taken by segment gaps
are now scanned with respect to string X2, with the creai
lion of segment gaps of ordinal value two. This action is
repeated with all of the remaining argument strings. At
the end, the maiked form, along with its pointers and
ordinal identifiers for the segment gaps, is put back into
storage with the name N. The mitotic-lied portions of Ole
string in the form are called "segments." It is seen that
the segment string function creates a "macro ' iii which the
arguments Ni, X2, etc., indicate the dummy variables.
The s11411if.'111 string function subsequently can he applied
with (other 111111110(11S to the same form, with the resell of
?Jew sigment gaps being ereatid with ordinal value MC,
two, ete,, mid being insorted among those already them.
A null string for one of the arguments N causes 110 action
for this argument.

4fcl,\',.\I,X2,) "rail" (two or more arguments).
The value is generated by bringing the form named N
from storage and tilling the segment .4:11,s of ordinal value
(o with string NI, 1Io galls of ord,nal value two with
siting X2, 'mil so on for till the segincot Oa form.

The follow ing calls rend out a part of a form.
They heat the segment gaps as if the gals were filled with
the Dull :iteing. These calls les, er, en, am. in) pecserve
the neutral active fortution distinction only far the strings
c011111.g 101111 the 101111 na11usl N. Since the alternative
value if these functions, symbolized by Z. may be a call
to a proicilere. the alternative value is !Nays treated
as if the function wile active.

All the trill functions (cf, co, re, en, and 'tail the
text of a form beginning at the location iodinated by a
"form point'; " whii h is part of the apparatus of the form.
Initia:ly the form pointer toints at the first theme t r
of the form. The call function docs not (tmp, the form
pointer.

irg.A* ,Z "' :II segment" (three ,irguinentsi. The
value of this Fine iion is the siring from the currint
location W.. the form pointer ti, the next segment gap of
the ii:upcd N. If the form is empty, the value is 7.
The (min pointer is moved to the first aharsher following
the segeni lit pp,

(re ,.* "tall eharacter" Ohms arguments). The
vatic is the (Immo/ r under the form point' r If the form

'lie (01111 pointer is 'towed one
i ?i:nrn'ti r ahead g.Aps arc skipped'.

irm,S ,1).7.1 "call oi IF rs- (four Arglitoitit$'.
1 his film lion it ails from the form named N fret!) the
point. by- the form pointer and continuing for a
:0110,/ r I,1' I ;);kr;11 941 'hull by the decimal integer
number at the tail i cf 11 e .16,; 1-:k1»1,0114,1 F,y

giiirLt gals an skiie-1 1. If the decinvil number is

218 ntmlleinl..lionA of the 10[11 I),

positive, this function reads the string to the right of the
pointer; if negative, to the left. The strings so read are
preserved in their character sequence. If no characters
are available to be read, the value is 7. The form pointer
is moved (right or left) to the next unread character.

,Z) "initial" (four arguments). Starting
from the form pointer, the form named N is searched for
the first location where the string X produces it match.
The value :a the string from the pointer up to the charac-
ter just before the. matching string. If a match is not
found, the value is 7. The form pointer is moved to the
character following the matching soh- tying, or is not
moved if there is no match.

li(cr,N) "call restore ',two arguments). This milli
valued function restores the form pointer of the form
named N to the initial character.

4(dd,N1,N2,) "delete definition" (two or more
ergunients). This null-valued function deletes (hi, forms
named Ni, N2, etc., from namory and removes their
names from the list of names.

Oi(da) "delete all" (one argument). This nullvalued
functi deletes all the forms in memory, and removes
their names.

Arithmetic Frinetinns. Taxi does integer arithmetic,
taking decimal arguments. The decimal numeric digits
are looked for at the tail endsof the argument strings. The
prefix string of the first argument string is ',reservist end is
appended to the answer, while the prefix string of the
second argument is ignored. Negative quantities are
indicated by the minus sign ", and initial zeros are
ignored. Whenever the integer values become so large as
to overflow the rapacity of the arithmetic processor, the
overflow ralue 7 of the function is lakcn. The (overflow
value is always treated ast if it were produced by an active
function. The arithmetic functions are: (011,1)1,1)2,7)
"add' , 4 (,,ti,1)1,112,7) "subtract ", (m1.1)1,112,7) "mul-
tiply" and (dr,01,1/2,7) "divide", They all take four
arguments. flu these functions, 1)2 is subtracted from 1)1,
and)1 is divided by 112, with the answer being the largest
integer enntained in the dividend.

(dean F it Pflin11 131X-11w111 T11.11C functions olirate
on strings of bits (of value 0 or I), i.e., le; Boole:Ili vectors.
The bit strings are represented by octal digits, with (itch
digit reorrsenting three hits. Thus the NI strings thare
lengths in moltiples of three. The octal digits arc locked
for at the tail end of the 01 and 02 strings, and any non-
octal prefix matter is deleted The functions are:

(bii3O 1,02) "Boolean union," 4 04,01,02) "ti i'lean
interscedon," 4 (4e,01) "Boolean (oniph nu lit." 4 It,e,
1.11,01) "Reed(an shift- and 4 fl o../4 "Booli an to-
fate." The bit strings are right ;iistified. In the It,-1014 511
IJP:on shorter string is col with lerohng tiros,
while in Me Paolcan int, rsection. tl,o lo.,gir string is

it-lira:0(st at the hi). In the romplena tit, shift and rotate,
the lingth of the but string ri mains the same. shirt is to
the le ft Ity the non kr of plarts .1,11fifit hy the 11,, its it
frl (1. Looded111.51 m.itler tcii,g lick toil) yarn

Volume? Nirmher 3 iatch 19114,

-37-
DI is positive, and to the right when 1)1 is negative. The
;law positions created by the shift are filled with zeros.
Rotate is also to the left or right, with positive or negative
valuer of 1)1. The digits displc^ed from one end of s he

vector are added to the place created at the %cher end.

Decision Functions
N ((qX1,X2,X3,X4) "equals" (Eve arguments). This

is a les: far string equality. If XI is equal to X2, the value
is X3; otherwise it is X4.

*(gr,D1,D2,X1,X2) "greater than" (five arguments).
This is a test of numerical magnitude. If the integer
dr finial number at the tail of string DI is algebraically
gri cr than the number at the tail of 1,r2 the value is
XI: otherwise it is X2.

Ezternuf Storage Monogr. runt Fouctions
(r.b,N ,N I ,N2,) "store block" Obree or more argu-

nients;.. This null-valued function .essenibles the group
of forms named NI, N2, etc.. and stores them as a block
in nil external storage area. The form names, segment gaps,
etc., are all preserved. W11(11 111C fortes have been put into
the external storage, they are erased from form storage. A
new form is rested with name N and with a string which
is the address of the block in extental storage.

(.16,N) "fetch block" (two arguments). This nutll-
valumcl ion is the eonver14, of the store block function.
The n111110 N is the name of the block to be Litho& The
locution restores to form storage all the forms in the block,
tongetc with names, segment gaps, pointers, etc, II does
not erase the block in exteroal storage, nor the form named

(c 6,N) "erase hawk" (two arguments). This null-
valued low tiros erases the form named N and also the
group of forms ire the block in external storage,

These functions periMt forms to be moved to and from
the main memory arid also protect the stored forms from
aceich coal e rasure. They also permit one to build a "stor-
age true,- II). this terhiliqtr, a group of forms can 1/C
:001,111 under a Amur iludrie, a so of group names can be
stored mulcr a suction name, and so on,

inanostic Fancli(itIS
et ((r,.\ : list names" (luso arguments). The value

of this hinctioll 0: the list or names in the name list, i.e.,
th wows of all 01(forms in form storage. Each name in
the t aloe string is pry-ceded by strirg X. If X is the chnr
sour lair "carriage retrain brie feed hmteetcd by
double parultilrescs, the names will be listed iii a C0111M11.

fiofV) foon" two arguments). This causes
the typing .nit of the form named N with a complete
nab(rt i of the h,eution and ondiiral t alms of the E4 gment

(tPi) " trace tr.'" argon), no. This null valunl
(dilution initiltts the trace mode in which, as the com-
fort at ioti feogrusses, the neutral strings for i rich function
are typed iron Ty ping the bac kspre. k(.y naives a valuation

of the lirm lion. and prise- ntrition of the neutral strings.
of the nrxi. otter r than backspace ..7.our.srs

1 nlelme u Number 3 Alarch 11966

initialization. Carriage return may be used ii iteall of
backspace,

(V) "trace off" (one argument). This is a nob-valued
function which terminates the trace mode without initial-
ization. Both trace on and trace off functions ma:;
placed anywhere in a procedure.

Examples of TRAC Procedures
1. The distinction between active and neutral functions

is usually puzzling. 1/) es -site, 111e value from an attire
function is reseanned, while in the neutral function it is

riot. The following example shows the action of the pm-
tectire parenthesis, the neutral and the iv tire forms of the
function. Consider that both N (da,.(1.4,CAT)' and the
simple program N 1,d8,BB.((cl,.t A)))' have been pre-
sented to the processor. Then,

0 frt.(te1.}01)))% Y 40,111 % f(1,1111)Y, 4 fps, a Kitts r).
prints out, respectively:

CAT(cl.AA),(c1,B11),

2. When the proeywor is quite full, it is often desirable
to delete all forms but one of a teirtierilar name. The
procedure N (ds,N, (cl,N)si (da)) will accomplish Ibis.
Here N 4 (ei,N) reads the form N into the processor, and
it is held in the neutral string while all the forms in 11/111[(ory
are erased. The form is then redefirod with its original
name. In this example., segment gaps Ire lost.

3. This and the fellow lig cvituple ate the ex
tension of Tittic capabilities through defining and storing of
suitable procedures. The calculation of the factorial of a
number 1'1111 le done by in pie recursion:

f,1,,Ftirt.,rinl.I ((q.11,X,1,
(4 (mt.X. (r1,1. rvir.ri.0, a tod,X, I)ji)
))) (u.racturial,X)'

Then the call fi !cllacto6ai,5)' produces the result 120.
4. Many users will prefer to have THAI' supply its fik5t,

sharp F;14118 and pen nthrses whet faring a finareliire. The
following will do this:

(,!.,1:rgli.11,1 (p.,
lel, S !rash(

)) f1.1)Iroh))).
To start this action, au use fri,Englishi', and tin ir if one
types in Fr1(10631.5' the resporis4, is 120 followed by
carriage return, line feed. The action is terinnianel by

Ackr,owtripmrnts. Special thanks are due to my col.
laborator L. Peter Di kitsch for his assistance in the it,.
vclornient and implementation of TnAc.

1. 11,-.^IFIR% C. N. TPAC, a tr%t '13,..111rAll,:g1Jur
;,,011) Na' CO: f ne

2 THIC-1 i,r.Cedlire fir,ir Ar,f1 \irni
fl,<Fsrth l'h;I

3 l'.4 vrsov. . 4P NI, It 1) .heror,,,,,r
ifir.11i,,,,JSr C-tn1,A1 1 1.11 Tr!, r I ,!.

r Ay 11 :1. N J .1 I .'4)

M, it rot, NI I) l*.i, mg, t,),,1011,
9.1711,011r rIpTr..r.f., Mtn, 1 c , 11.1 1,1, 1.1

1.00 Niqtrar 11111. N 1 , 11. TT- ,11.1-"11

S. St11.4CRIA. C. A gtntrs1 n-.%.7.t-contrAlr,r. J.
8 , 3 itgre

nmnstiniralcnn or 11,5 tt 11 219

-38-
fvfT /4 OSLO 151,7
OTTO 1.71 MATT,

4
314 N,11/.,..TIe.4, ITTITOTLIM
ITS 114. OT./TV ow. cy 10 MI
4114 {IC. TWO NI TIlot 171%.

NU, 1,4 ST: PLITTTO FD MN/
to 14,14 S4.4, NG I4 1[11. I. TRAC

A TEXT RECKONING AND COMPILING LANGUAGE
0(1 KO Y oMhi* ocrtat

'YR I) 0..4111 611.,
4/ /To I.. GNIISI IA TOtAf

To N *cm NT IT. ITTCI,74, TV:T.,. rNSIT T.....I C etAD NT, NT
V. 54:T4 K 31,17 N UT TO I

,/ Y <TYMIr /T.:T.711
LITT ottatrItit 'c,

to a c.a.,. ITO TO

T ?

.L14 Y 041/0,TI .o1N fo TV Li

..1.1 Y Y T4T T.4Y[CO NI TUT,. 1 ItNI NI : K OTT

Ta I. Tr. ,

we. TKOT.'1. T
E CNN. ,1

1 C'

ogvgLoto W CILVIN N

41.4
t Fs N ,T

A. 11 N rtT S1 TT,

Ir IS ...WT., T.

t 11 (kr IN .0.

6.0 rs14
T51 n Out

TOls T1 'Jo l
NI TIT. ToT T Yi '

'1 'a Ame - 4%.
TTT Tt ATT r NO 4, 14 v. Ts

.t. To It ,..11 NI INT TSK 4,4-4 WI 4,
NI I 411. T1 WA/ TT N :Tor

1.

m 14
N 4,. SIT TT. KT TS

4 o* TOT t

N I', 141 1T/ 11 Tx*TY 4. SIT st t
PO, in. T IV, 41,4

ITTII N 4 OTT .4 104AT T. N IT

I '4 7.41 OM 1. ,x , at. te..aat a . or .,30. Is

ae' '4 .11 ,4 a, 3,. :5 o N1441 14 TA
14 TTO, K wrq Y 1'IT ft, .11 (LW,. ;

14a W E.1

14, E r I 4., -*PT
ET N . NW l, /./ ITT ,Ta 1+1'1

a -NI 4. TOT TR

51 ot anat. . at. f a caa ,tr- . tAt, 14%4, N 4 'KT 44 at 41
TOT , TO

"T7 NI 414 OF4: NI MT Of T

MIT

44 I .04 i T 0411*4 4- W I

S.14 .41 A . MC f,rt taa a.
oft V4Jtr It -a s 41

2. 4 *I V.11: I V I

ITOK +TM N 1,

APPENDIX B

ELIZA -- A Computer Program for the Study of Natural Language

Communication Between Man and Machine

and

Contextual Understanding by Computers

Joseph Weizenbaum
Massachusetts Institute of Technology

included with pernission cf the author

di

-39

ELIZAA Computer Program
For the Study of Natural Language
Com.nnn;eation Between Man
And Alachine

\VEtZFAIIINI
.11(IN,r4 liu,4 its I of.N1 a 7'« nulwpi,* Condo idur. .11

ELIZA is a program operating within the MAC timeshoring
system of MIT which makes certoin kinds of natural language
conve:sation between mon cnd computer possible. Input sen-
tences ore analyzed on the bo;is of decomposition rules which
are triggered by key words appearing in the input text.
Responses ore generated by reassembly rules associated with
selected decomposition rules. The fundamental technical prob-
lems with which EUZA is concerned ore: (I) the identification of
key words, (2) the discovery of minimal context, (3) the choice
of appropriate transformations, (A) genration of responses in
the absence of key words, and (5) the provision of on editing
capability for ELIZA "scripts". A discussion of some psychologi-
cal issues relcvont to the ELIZA opprooch os well os of future
developments concludes the paper.

Introxilactistil

ll i-s:ii.111131 to tAill:tin i.tt Sn c\piniii :may. Thi, N.1111

1 tifiSslit n. .11 cell fulfilkll ms in the m1,1 of
pmgr;unnling, t' -late idly i +t %Olaf i. callod lantri,t

anal ititcliiKettop. For ill ?how rcnim.
lunching- nrc ilindo to Itaa\ in \lamina' way, often
-Itlli,icut In dente (Alit tho tAperiiiirtit oir-tIvcr.
lilt once ,a icirtirolnt program may it.

r w\rkinfr, (Apinin(41 in language sufficiently plain
to 'mime mu!' r-inioling, it magic tnmthlrx zmny; it

mvi,n1c,11 :is a nun' collcrtilin of iiracodurus, each
Illlitc comprill,.11-itilo. Thu- ati,4-rver .aye
1,1,10,1 (55o. %%1 ill, 11 1111i". 1C1111 licit thought Ire mover the
1,11.5mni in 11u, aisru from if imirkt41"intulligctit",
1,, Ihat o -1.1%1.1 for fit In Ito .1 aunt' %stilt
1.511,11 114-11 1},sti ii

11 irjr.rtr rIl 'tiro ,111. t,,.11 NI Lt.,
5111 'I .1 ill it pi Itt 'III .,.I..I L\ 511 rest I 41,t1

PIP *I., 1er.v.itil. ..f l4 .I
C It 1,1 14 r 14. r 111

IH1,1riv /I

lt nu. I hr 11 11

4

Iii' Obj1.11 of Ills. 3113/11tr tO eau a jLIA 1101
evahlnliun l'f l'r"A"11 ..(IS)"I In Is' \ 1)1'61"11"
program: (wur livened it 'harp.

ELIZA 1'ro};ruits

1::1.11A :1 Pr"gratti %%hid' aunt,. linturn1 Inmoingo
conversation %%itti a tamputer lt, pic,cnit iinpl-
montalion \II .

111 is written in NI.11)-Sr.n. for Ow IfiN1 7(ItIt. II; !coo.
v.-as 1.110,411 to t1ni,11:1:tizt. Itctl it in:Ly Iry in, ntrnlslly
Unproven by ifs IN since it, laligivigt. arty
cnuliuually ilivioY(41 by :s 11.0a. the 1:1l4n of
Pygliviliori flint', it in Is' nplivor even mein.
civilized, Ihr mr.dinii of uppenrancy Iso re;ility, lomevr,
reninining in Ilia liminiii of the

for illar pr. m-cnit purl,''.' it i elinhicicao.
y,"ein ;Ls our \\Itieh perinit, illilt111111:11 to

opernii, r1 computer from u rctuotcly loenled lypc
writer. The Mali\ id.tril operator lin,

"4)11'1i-or col Ihr con pnIcr 11)1111114.v %%hill' in f:01 11/114
in:ty I -link. ,11.1rOlg" Ihr -ptIcrit \\ ills him. Wicit i-
impoll,nLI salt
lyputi fort lbe typt n-porid by %tilling nit Ilis'

Thu,
;, iin,f tho ;ippenrnurp paic,

function 5.1 ow pri.gr31,, ("droning out :Rid of
'PO) NIA(' the 11117111I of II.11,
c111-rutilly Olt lite -y-ii 1111, I.111t1 r

m11%111111, r go urrnlly little la Oar sic(rill
rypa1i-4, time tied sorivcr.,ntional it)ts merlon tt

cunLiotr lily involve ttniy r:11,111. 11111:1y..

1Ch,t, in 111111"NAlinii %%Oh ELIZA, Ow 11-4 i' 1\p',
,1;111 In sit .4 I a .13111101111, 11,g11.10

1101551,11 punrfuali, us sus I -4 ,Inn -turs Only
fhr (inc.tion 'tiny not lc men. 1.0 ;111s if i. IN

pn fed :V, n lirn, Iris t 1,rtr;w1(r by Oro M. \C ,15 It'. The
11,,er's 'Int(men! Icintiii31(4-1 ;11:.nble .11Crlfilltli
Which t,rvt's: to flit it (-1min-A oyt r to LA .IZ.k. II, is
;Maly?' 11-ue 0;011111'0 ;lid 11.

hick it lyih gni? ('evIli%)1 stills

I) PICI 1111.clr',Ilioit 1' III' ria1"11'LL:
1, 1, sr" AI
1N 'A 115F %I.%)

(1\ to' MI\ 1, "I'ts II It I \
W(11 P,s tr, 1,.
tnl I: NO 15:II \ S111.I NI .1\11 Irl I:1
Ile .Inn tt II, 11,

551 11:/:) lot III 51 11)1 5E1 111111..11)

"'Mt, NI/11111.1 If I 1.111,,Or*. I Hlt

t roe. 1 am oiduipliy.
DO YOU THINK COMING HEli E WILL HELP YOU NOT TJ

BE UNHAPPY
I need smile nett., that much seems certain.
WII AT WOVLO IT 11.:AN TO YOU IF YOr GOT SOME HIM,
Per-kips 1 could 1e;1111 In get along with my mother.
TELL ME NIOltE ABOUT YOUR FAMILY
My riot her tr..'ses care of roe.
WHO ELSE IN YOIAI FAMILY l'AEES CABE OF YOU
My fat r,er.
10111 FATIfEll
You ire 13:e lily father in some ways.
WHAT ANCE DO you SEE
'foil are ro,t wry iiggr,ssivc lout I think wail Me to

ice I1:it.
W HAT .NIAKI:S YOI"[HINK 1 A..1 NOT 1 EBY At iGRESSIVE

.111'). argot' with
WIIN' I VOL THINK. 1 DON'T AllIGUE WITH YOU
You :are lifraid of n.e.
1/1/ES l'I,EAS1. Y111. T11 RELIEVE I AM MICAH) OF YOU

Littler is afraid a.1 crcrOiody.
WHAT 1:1:sE COMES TO WHEN YO1 THINK OF

10E11 1:A111E1C

IiiU TIIAT HAVE ANYTHING TO WITH THE FACT
TIIAT YOUlt BOYFIIILSO NIA01; YOU COME HERE

capitalized lines are Fie machine responses.
The gross procedure of the program is quite simple; the

test is read :old inspected for the presence of a keyword.
H tort is found, the sentence is tratisformN1
according to 11 male associated with the keyword, if not a
(min-id-few remark or, under certain conditions, an earlier
transformation is retrieved. The test so computed or
retrieved is then printed out.

in detail, of course, the procedure sketched above is
considerably more complex. keywords, for esaniple, may
have a MAX I or precedence number. The procedure is
sensitive to sitch numbers in that it will abandon a key.
word already found in the left to right scan of the text in
favor of one having a higher rank. Also, the procedure
raeoguires a comma or a period as a delimiter. Whenever
iitner one is encountered and a keyword has already been
found, all subsequent test is deleted from the input mes-
sage. If no key hail yc t been found the phrase or sentence
to the left of the delimiter (as well as the delimiter itself)
is ileIcted. .\ a nsult, only single phrases or sentences are
ever fritrisforini.A.

11.ymords !mil their associated transformation' rules
constitute, the SCRIPT for F. particular class of con.
versation. Art important property of ELIZA is that a
script is data; i.e., it is not part of the program itself.
Hence, El IZ.\ is not restricted In A particular set of
recognition pain rns or responses, indeed not even to any
specific language. ELIZA si ripts mist tat this writing) in
Welsh 111111 Gellman as %till as ill English.

The fundamental icchnicai t .ob!erns 'oh which ELIZA
mist le preoccupied arc the folleming-

t 11 The ith I it 'diem ion of he -most import ant key erd

1 I, o..rd II. crr,fro- igler
(1,1 crtr sr It in 117 I/V/i.f ff enTOril

plume 9 Niloil.er I i January, locos

4

-40-

occurring in the input message.
(2) The identification of some minimal context within

which the chosen keyword appears; e.g., if the keyword is
"you", is it followed by the word "are" (in which case an
assertion is probably being made).

(3) The choice of an appropriate transformation rule
and, of course, the making of the transformation itself.

(41 The provision of mechanism that will permit
ELIZA to respond "intelligently" when the input test
contained no keywords.

(5) The provision of machinery that facilitates editing,
particularly extension, of the script on the script writing
level.

There are, of course, the usual constraints dictated by
the need to be economical in the use of computer time and
storage space.

The central issue is clearly one of text manipulation,
and at the heart of that issue is the concept of the trans-
formation rule which has been said to be associated with
certain keywords. The mechanisms sulsurtoi under the
slogan "transformation rule" are a numbe,. of Stir func-
tions which serve to (I) decompose a data string according,
to certain criteria, hence to test the string as to whether it
satisfies these criteria or not, and (2) to reassemble a
decomposed string according to certain assembly spetifiea-
tions.

While this is not the place to discuss these functions in
all their detail (or even to reveal their full power :Ind
generality), it is important to the understanding of the
operation of ELIZA to describe them in some detail.

Consider the sentence "I ant very unhappy these days".
Suppose a foreigner with only a limited knowledge of
English but with a very good ear heard that sentence
spoken but understood only the first two words "I am".
Wishing to appear interested, perhaps even sympathetic,
lie may reply "How long have you been very unhappy
these days?" What IM tinst have done is to apply a kind
of template to the original sentence, one part of which
matched the two words "I run" and the remainder isolated
the words "very unhappy these days". Ile must also have
a reassembly kit specifically associated with that template,
one that specifies that any sentence of the form "I ant
BLAU" can be transformed to "How long have your
SLAW, independently of the meaning of BLAU. A
somewhat more complicated (sample is given by the
sentence It seems that you hate me". Here the fitivigner
understands only the welds "yon" and "tne"; i.e., he
applies it template that ilecomp/, the sentence into the
four parts:

(It It scru,.Ihat ,2, tan (3) 111.-.

of which only the second and fourth parts are urd.
The n .1ssritly rule utigl t then to hat rinks ,/ci
think I hate you"; ir., might throw frk ay the firr
component, translate the two know', wont< r-y,,11. In
"I" and "me" to "you") and 'sick- on a go, k phree
(hat makes you think) to the front of the T.(rOrn,tru,

inm num tem i ion,. of the 1.11 37

-41-

A formal notation in which to represent the decomposition
template

(0 YOU 0 ME)

and the reasseiably rule

(WHAT .1,ICKF:S YOU THINK i 3 YOU).

The "0" in the decomposition rule stands for "an in-
definite number of words" (analogous to the indefinite
dollar in of C0MIT) 16) while the "3" in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom-
position rule

(0 YOU 1 ME)

mould have worked just as well in this specific example. A
nonzero integer "n" appearing in a decornixosition rule
indicates that the component in question should consist
of exactly "n" words. However, of the two rules shown,
only the first would have watched the sentence, "It seems
yon hate and love me," the second failing because !lure is
more than one %von! bet wool "you" and "me".

/A\ /AN
Flo. 1. Keyword and rule li5t t,trueitire

In ELIZA the question of which decomposition rules to
ripply to an input text is of course a crucial one. The input
sentence might have been, for example, "It seems that
you hate," in which case die decompo sition rule (0 YOU
0 NIE) mould have failed in that I he word "MI'," would
not have been found at all, del alone in its nssigned place.
Sonic other decomposition rule would then have to be
tried and, failing that, still another until a match could
be made or a total failure reported. ELIZA must therefore
have a mechanism to sharply delimit the set of decom
position rules which are potentially applicable to a cur
mitly active input sentence. This i- the keyword mecha
nisi]]

An input sentence is scanned from left to right. Each
word is looked up in a dictionary of i-:,ymonls. If a word
is identified :Is a keyword, then (apart from the issue of
pri,c,.dence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequenca
ran t vet, be partially endued. For example, the decom-
position tide (0 YOU 0) associated with the keyword

dr-romposi-Ig Sentence into (11 all
word- a front of "YOU", (2) the won! "101.'", And (3)
nil ;r.r,lc following -YOU) 0101114 Ire the last one tried
Sint(' it k bound to sUCTIV(1,

Two ITOINII'S now arise. One stems from the fact that

allilust none of the won in any given sc ntcncc are npre-
soiled in the keyword dictionary. 'Itie other that of
"associating" both decomposition and missernbly rules
with keywords. The first is serious in that the deterniiiia
lion that a word is not in a dictionary may well require
more computation (r.e., time) than the location of a word
which is represented. The attack on both problems begins
by placing both a keyword and its associated rules oil

The basic format of a typical key It is the following:

(K ((Di) (R2. 2) (11,, 2) (ie,..,))
((D2) (R2, 1) (R?. 2) (RI -0)

(,(1).) (R,,,,) (R., 2) (1

where K is the keyword, I.), the flit decomposition rule
associated with k 311(1 kJ, jtli reassembly role aso-
ciated %vial the ith devonurosit ion rule.

A oninion pictorial representation of such a siructtne
is the tree diagram shown in Figure 1. The top level of
this structure contains the keyword followed by the nam.:
of lists; each or.e of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rides. Since list structures of this type have no predetcr
mined dimensionality limitations, any number of decom-
position rules may be associated %% Li a given keyword and
any norther of reassembly rules wii h any Specific 41eCC)111
po.sition rule. Sue is rich in functions that sequence over
structures of this type cflicil progrumein
problems are minimized.

An EI,IZA script consists n, Liny of a set of Ii -t
tures of the type shown. The :leitial keyword di, denary is

constructed when such a script is first read
hitherto criq.iy program basic structural omponent
of the keyword dictionary is a vrrt,,r 1<1:1 of h.nrr, (it ly)
128 contiguous computer words. .1, a P3111(111 it k, y ht
structure is read the key]' on! l' at its to :r is randoricred
(haishc,1) by a pore..lure that produces (cunrntiva a 7
bit integer "a". Th moral -always'', for ex:111,111e.
the integer 11. El ;1(1), i.e., the ith earl of the so, for
KEY, is then usatnint,1 to den rnihw whelk r it contains
rt name, if it dew, mot, 11111 Ian Imply 11-I is t

its name pLic-d 1:1(r), and the key li-t sirtieture ins
question iihrol on thar list. If 1:1:Ytri already oil'airs
'1St nacre. then the mune of the key list stiticture is placed
on the bottom of the It nthied in 1:1:1(1). The largest
dictionary so far attempted contain. about :00 k, y wools
No list named in iiny of the words of the 1XF:1' %, r for

contains more than No kty ti,t structun .s.
Every wont encountered in ilie .4%111 (4 input ti xr.

i.e., during the actual opera' ion. of FLIZ 1, is ranlonlin ,1
by the sore has! tog m origin:111y TpII, I ro

the incomine: keys, onIQ, he nre integ.r
points t le ee:ty polIttlo ¶,-t ,11-11,111re 'All,t1t rola!
1,00-n0.111y CentA'n II, k, n 11,

only the top: of :tri r list -inn inn s lh is m 1y I.- f, 1,d
I hcre UPI 1 he HI(Ito d too olo to 110'W 11ho tor ,,o,1

kr, Aor,1 h irtu, of th. v o:o1; II?

trommont,troo. Of the ti 't 101..me 9 , Niml.rt 1 huol ,f 1.

4 i

sequencing operalioni that SUP makes available, the
actual identification of a keyword leaves as its principal
product a pointer to the list of olecomposition (and hence
reassembly) rules as-miat(il with the identified keyword.
One result of this strategy is that often less time is required
to discover that a given word is not in the keyword dice
tionary than to locate it if it is there. However, the location
of a keyword yields pointers to all information associated
with that word.

Some conversational protocols require that certain
transformations to mark nil certain words of the input text
indopentlently of any contextual considerations. The first
conversation displayed in this paix.r, for example, requires
that first person pronouns be exchanged for second person
pronouns and vice versa throughout the input text. There
may is' further transformations but these minimal sub-
stitutions are unconditional. Simple substitution rules
ought riot to be elevated to the level of transformations,
nor should the words involved be forced to carry with them
all the structure required for the fully complex case.
Furthermore, unconditional substitutions of single words
for single words can he aecomplishNI during the text scan
itself, not as a transformation of the entire text subsequent
to scanning. To facilitate the realization of these
desiderata, any word in the key dictionary, i.e., at the
top of a key list structure, may he followed by an equal
sign followed by whatever word is to be its substitute.
Tranforniation niles ID;11', hilt rATA I WO, folinw. If none
do fi.liew suet, n sub,titirt ion rule, then the substitution is
made en tlw fly, i.e., during text scanning, but the word
in question is hot identified as a keyword for subsequent
purposes. Of I curse, a word may be Lx th subtituted for
and be a key.vord as well. Au t 31 I Iple of a simple sub-
stitution is

(YOUBSI..1.); Y141%1),

Neither 'yourstlf" nor 'myself" are keywords in the
particular script front which this example was (hasten.

The fart that keywords can 'rave rat ks or precedences
has already 1,etri re ntione.1, need of a ranking mecha
nism may be s S.lablislied by an example, Suppose an input
senicei, e is ''I know everybody lat,ghed at me." A script
may tog the wool "I" as well as the word "everybody"
as t. keyword. Without differential ranking, "I" occurring
first wortd determit.e the transformation to be applied.
A typical response se might iv You say you know everybody
laughed at you." Put the important message in the input
seta, ixe begins with the word "everyhexh". It is very.
often true that when a per-on speaks inn terms of universals
sur`i as "evi tYbdy", -always" at nobody" lie is really
o ft rriog to some unite speeific (Nutt or person. Iiy giving
.'e rybridy" a higher rank than ''I", the response "Who
in JO, istrir are you Fnk,!,ir of" may be gent rated.

1h, sj, ,:fx ta-chan, en employed in ranking is that the
fry loyvtorl ncomitcn.1 Wren, e of rank

rank teed jz ffITIT1Tell with the rank of Ole
r(nketi to 'roil n. If the rr.nk of the

inilirr I Nliillter Jai,.un, ties.

4;i

-42-

new word is higher than that of any previously encoun-
tered word, t'ae pointer to the 'iransformation rules
associated with the new word is placed on top of a list
called the keystack, otherwise it is placed on the bottom
of the keystack. When the text scan terminates, the key-
stack has at its top a pointer associated with the highest
ranked keyword encountered in the scan. The remaining
pointers in the stride may not I^ monotonically ordered
with respect to the ranks of the words from which they
were derived, but they are nearly soin any event they
are in a useful and interesting order. Figure ?, is a sinipli-

4:-

C.. '.'
1

----C:.:i.,.,.. -,
1,:!..!...-:::,1

11

2,1._

F1.3. 2. 136Al,! flea' diugram of ke)word deter tiorl

fled floe diagram of keyword deteeti.n. The rank of a
keyword ro', of course, also be associated with the
keyword. Therefore it must appear on the keyword list
structure. It may be found, if at all, just in front of the
list of transformation rule; associated with the keyword.
As an example consider de word "MY in a particular
script. Its keyword list may be as fol'ins:

YOUR 5 (transformation ri'rP))

Such a list would mean that whenever the wool "MY" is
encountered in any text, it would be replaced by the word
'YOUR". Its rank would Ire 5.

Upon completion of a g ven text scan, the keystack je
either empty or contains pointer derived from the key-
words found in the text. Each of such pointers is actually a
sequence reader--a Sur mechanism which facilitates
scanning of listspointing into its particular key list in
such a way that one sequencing operation to the right
(SEQ1,11) will sequence it to the first so of tran S,M1115..011

rules associated with its keyword, i.e., to the lot

Utto .. (k,,
The top of Mat list, of course, is a list which serves a
decomposition rule for the subject test. The top of rho
keystack contains the nest pointur to actuated

The decomposition nile I), associ,-,.c.1 with the keyword
K, i.e., 1(1),), is J, is non tried. It r ay fail however. For
example, suppere the input h at y.;,?

Y 't Ate cc, , t r.pt o

tomno.oi. Won of Ike k(.511 39

-43-

4

The keyword, say, is "you', and (P,), you 1 is

(0 I reaitiat yon ,f

(lh call that the "you" in the original 'critence has already
bet I replaced by "I" in the text now analyzed.) This
decomposition ntle obviously fails to match he input
whit tee. Should 1 (D,), JiI fail to find a match, th,-n
!WO, K is tried. Should that too fail, 1(D1), K1 is

t cd, and r-o on. Of course, the set of transform ation
Jules can Inc guaranteed to turniinate with a &CO/IVO:Ilion
rule which 111l1.4 match. The decomposition rule

IOKOt

wilt match any text in which the word K appear chile

404

V111 march any text what t vet!. However, there are other
ways to leave a particular ,et of transforroation Mks, as
will lie sliman below. For the present, suppose that some
particular decomposition rule (1),1 has matched the input
text. (1),), of course, was found on a list c.,f the form .

Ur) i)(11%. OM, 0 (R

the reader which is presently ',tainting at
(11,1 will retrieve the reassembly mkt (R, which may
then be applied to the decomposed input text to yield the
output message.

Consider again the input text

1441 are very helpful

in which "you" is the only key world. The sentence is
transformed during scanning to

I are very helpful

MO, 3'0U1 15 "(I) I remind yaur of 0)" and fails to match
as iiIrcaly discussed. However, !(f).), you/ is "(0 I are (1)
and obviously matches the Ice,, decomposing it into the
onstiluents

1 pl) Ill I B ,re 1 rNC help(it

(I?,, IN, goal is

im hat tuskr. the k 1 set 4

If(no it produces the 0,0 put text

0,i1At. I and tore 1,,111rol.

Naa it l 1.1.1.111101 it, the int(g. r I is put in front of (R:. I)
so that 1114" !ranfon 12..t ion ride list ire question now al'ix

C1)t\11(8:. OH: 21 I H2 .,)).

\t 11n1° 1(1),1. K 1 nialch4 s an it pmt It 21, the r.3;1311,!,
1114 H,) will lc Applied Mid the inteeir l will replace

Its. I Ator 4R, ,0 has lean ex(nipd, (R,.tl mill again
Ire in .-44(d. Thus. after the system has been in u.a for a
tint.. I. VI Ty decompositieti rid, ahi,h bac roatcbol same
input text its asseariated mull it an integer mhich (-erre-

tO the last tC3'....4 ;ably rule 12,e4 1 in conne(lion mith

110 .,enn.m.nitalion. of the ILI 1.1

that decomposition rule. This meth:mi.-in insures that the
complete set of reassembly rules as...02431(1 with a give))
devoir.position rule is cycled before any rilad 1 t ion s

occur.
system dencriheil so far is essentially one whieti

selects a decomposition rule for the highest ranking key-
word found in an input text, attempts to Matti] that text
according to that decomposition rule and, failing to make
a match, SeleCtS the next reassembly tid n,rwc";:tte41 Pith
the matching decomposition rule and :4pplies it lo generate
an output text. It is, in other wool:, 3 Sys.t1'111 %%10'01, for
the highest ranking keyword of a text, selects :1 specifie
decomposition tind reassembly role to la used in Terming
the output message.

Were the system to remain that they keywords
that required hhaltical sets of trarisfonitatinn rules would
each require that a copy of these transformation rules be
as,ociatell with them. This would be logically sound but
would complicate the ta-k of script %%riling:4nd would also
make unnecessary storage (1(matels. There an. therefore
special types of decomposition rind assembly 11214., char-
acterizd by the :Lppenrallee of .`=" at t144- top of the
rub. list. The wont following the equal sign indieatcs w hich
new set of transformation odes is to be applied, For ex-
ample, the keyword "what" may have associated with it
a transformation rule set of the form

(1.0) 4Why do y4. 41 3.1.1() Os that an in.pontant cteRti.111 I

which would apply equally well to the keywords "how"
arid "..then ". The entire keyword list for "bow" may
Ilien.fore tle

tiles (=What or

The kemonls "low ", "what" and "when" may !lop, Is'
Made to I:orni sit equivalcnee class atilt rusted to tie
transformation rules 'which are to apply to them.

In the abut e example the title "(= %%hat)" is in the
p1;,,,, a 3 detomposition nth., although it causes rot

defonlaeitioo of the relevant text. It may 241-o app4 ar,
howeve r, ill the place of a reas-t mbly Vor o 2:121,00,

lbe k(ymor41 -am- may have among others the follow
trate-ft-Tin:0in, rule set associated molt it :

Arr).'1 me 4 .1

(it is here assumed that "are- his tarn -411 4,tillitcs1 for
"am" and "you" for '1'. in 11 e 11101, 1 14 It seam) Tim ri,
the input text

k4-41 I 44:(k

mould elicit t h r

It., re4,4 arc a .14:

or

11 ht 11 01 reek

III IN riding on lou many ton. Oa. ¢I 114 r.t1 f. 1, ti

airy;idy r.coltrA+1
Uhl' 1' 1 1 1 1 etla r In I v le 414 r .1 4.1- to

ettrne 9 Nmythet t .bIntl... 111°,

-44-
perform a preliminary tranaiorniation on the input text
before subjecting it to the decompositions and reasseniblies
which filially yield the output text. For example, the

r keyword "you're" should lead to the transformation rules
associated with "you" but should first be replaced by a
word pair. The dictionary entry fc r "you're" is therefore:

(you're I'm ((0 I'm 0) (PRE (I AM 3) (=YOU))))
xliich h.1; the following effect:

(I) Wherever "you're" is found in the input text, it is
replaced by "I'm",

(2) If "you've" is actually selected as the regnant
keyword, then the input text is decomposed into three
contittaiii parts, namely, all text in front of the first
occurrence of "l'in", the word -I'm" itself, and all text
following the first occurrence of "I'm".

(3) The reaasembly ruts beginning with the code
'I'llE" is encountered and the decomposed text re
azeinbled such thiit the words ' I AM'' appear in front
of the third constituent determined by the earlier de-
o ra.iposition.

(I) Control is transferred, so to speak, to the trans
formation ride.; asaociated with the keyword "you",
when further ilia.nmpo.---itions etc. are attempted.

It is to be notes' that the set

alit: (I AM 3) (-Yatti,
i= logically in the place of a reassembly rule and may
therefore le one of many re.issenibly rules associated with
the R.V1'11 decomposition.

Aliothur form of rt'a,,,-seiribly rule is

what' s rims the casa in whirl' anemia to to match en the
(intently regnant keyword are to be given up and the
I lit ire ro:.S3(nnbly process iS to Mart

on the basis n(the keyword to be found in the
k(t staek. Whenever ths rile is iii k' the top of the
ki Est lek is "14 'wed up" once, i.e., the new regnant key.

Ovcrt,1 I hiim the keyStark, and the
ilitileurim1F.S rL Ti Imd;as if the initial text scan had just
terinileitist ibis toe- hanisni ni ikos it powible to, in effect,
tract flTi key niag a at to single key words.

A s-ri,als Ii remains to be discussed is the
n tion of the .5.Y.St111 iu eas, no keywords remain to
serve as transrotinqi.m triggers. This can arise either in

s the 10 ystaek is emitv %%lien NEW KEN' is invoked or
1` li.211. lest I no keywords initially.

he siii t, 51 inr, is in the form of the
I 11 mis ryi.1 111 11.41ril ''':)NE" soach must bC pirt of

any s ript The s rim it, I.:1mA lase-a:late the universally
-ei.r...hing,fisomcsitier J1) si h it and follow this by

neiny Tit r inarka in 0' e form of trar,sforrna-
tion ruhs as lie 1,1, :1st-. (E..11,i,,l; are "Please go nn",
'Thats vi ty int, n sti;.;" and "I fQ ,

Thrr i is sr vi r, smiths r mcchar-ini which causes the
5y.1(to to respond more Fpn-tneulArly in the absence of a
revs The nor.' -MEN10111." is are- t reA-rvel pseudo
Lea mord. TI' ki y structure associated with it ,-144-i-a

1pillme Number 1 / 1966

from the ordinary one in some respects. An exaninle
illuminates this point.

Consider the following structure:

(MEMORY MY
(0 YOUR 0 = LETTS DISCUSS FURTHER WHY YOUR :U
(0 YOUR 0 = EARLIER YOU SAID YOUR 3)

The word "MY" (which must be an ordinary keyworal
as well) has been selected to serve a special (unction.
Whenever it is the highest ranking keyword of a text one
of the transformations on the MI:MORN' list is randomly
selected, and a copy of the text is transformed accordingly,
This transformation is stored on a firstin-first-out stack
for later use. The ordinary pt..ces..ses already describes! are
then carried out, When a text without keywords is en
councred t.ter and a certain counting mechanism is in r1
particular state and the slack in question is not empty,
then the transformed text is printed out as the reply. It
is, of course, also deleted from the stack of such trans
formations.

The current version of F.LIZA requires that one keyword
be associated with MEMORY and that exactly four
transformations accompany that word in that context. (An.
application of a transkaanation rule of the form

(L'...:FT HAND SIDE NAND SIRE)

is equivalent to the sm-es.s.:ve application of the two fortes
(LEFT HAND (RIGHT HANO SIDE .3

Three more details will complete the formal description
of the ELIZA program.

The transformation rule mechanism of Site is such ti at
it permits tagging of words in a text and their subsequent
recovery on the ba.:is of one of their tags. The keywanl
'MOTHER" in EL1ZA, for example, may be identiF,ed
as a noun and as a member of the clas "family" as follaws:

1MOT'I (/NOUN FA3I11.15!.

Such tagging in no way interferes with other inform ration
(e.g., rank or transformation rules) which may be asso-
ciated with the given tag word. A decomposition rule may
t';'ntain a matching constituent of the form (TAG!
TAG2) which will match and isolate a word in the
subject text having any one of the mentioned tags if, for
example, "MOTHER" is tagged as indicated and the
input text

"ctaNsitallt Mt AGED MOTIIEE AS IVELI. AS Mr"

subjected to the dec-ompoition rule

.0 'tont 0 ;,.F.tatil.1-1 r.)

(remembering that "MY" has been ti'phrf,1 by 1 01.11
then the deconnosition would be

Co:',SII4:1; 11)111 .10 ;HI rt, 510T11 H
.10; Vi FIT AS ME

Another flexibility inherent in the Stir text nitro ill
ton mechanism uraictiy 1:LIZA is tha g of
matching criteria i= permitted in decomposition nib s
The above input text wouti have been deconiposel

Cernmtbniroliona of the Al VI $1

45-

precisely as stated above by the decomposition rule:

yorit 0 rxrATilt:it NIOTII W,

which, by virtue of the presence of "." in the sublist
structure MS.'n above, would have isolated either the word
"FATHER" or "MOTHER" (in that order) in the input
text, whichever occurred first after the first appearance of
the word "YOUR".

Finally, the script writer must begin his script with a
list, i.e., a message enclosed in parentheses, t.iiich eontains
the slat(mod he wishes ELIZA to type when the system
is first loaded. This list may be empty.

Editing of an ELIZA script is achieved via appeal to a
contextual editing program (El)) which is part of the
'Al AC library. This program is (ailed whenever the input
text to ELIZA consists of the single word "EDIT".
ELIZA then puts itself in a so called donnant state and
presents the then stored script for editing. Detailed
d. scription of El) is out of place here. Suffice it to say that
changes, additions and deletions of the script may Ix' made
with considerable efficiency and on the basis of entirely
contextual cues, i.c,, without resort to line cumbers or
any other artificial devices. When editing is completed,
El) is given the command to FILE the revised script. The
new script is then stor.4 on the disk and read into ELIZA.
ELIZA then types the word "START" to signal ttutt the
conversation may resume under control of the new script.

An important con-exinence of the editing facility built
into 11.17..k. is that a given ELIZA script Mill not start
nut to he a large, full blown scenario. On the contrary, it
should begin as a quite modest set of keywords and
transformation rules and permitted to be grown and
molded as experience with it builds up. This appears to
be the best way to use a truly inn I-active man-machine

i.e., not as a device for rapidly debugging it code
repn &riling a fully thought out solution to a problem, bit
rather ss an aid for the exploration of problem solving
t trategies.

At this writing. the only serious ELM.% scripts which
exit are some which cause LLIZA to respond roughly as
would certain psychotherapists (Rogurians). ELIZA
performs best when its human correspondent is initially
instrirtod to 'talk" to it, via the typewriter of course.
just as Mr would to a psychiatrio. This nusa,.. of cnn-
tersation was (hose n Is -c ause the psychiatric interview
is one of the few Ixamples of rategorizol dyadic natural
tangle ;re tc nunnt iraSinn in which One of the par'iiipating
pair is file to assume the pose of knowing almost nothirg
of Ow t, al 1% erlih if, for usantple, uric wine to till a py-
ehiitri.t at rit for a lot g boat ride" and he n Toti.14-1
"Tell inc atolit 144,014.", ins' 1%01114 not r1,41intelhAt he knew
nothint about borps, 1.111 that be had .-nnie purprse in so
dincli ,g tlx nt conversation. It is important In
POP 0,11 I hi, assiimpt ion i One made by the speak(r.
W fre; it is rTall,tic or 1nA is ai altogether separate
question. in any case. it has a crucial psychological mill!):

12 I nry, rumit ovr Ihr 111 M
4 ,

in that it serves the speaker to maim:lir. his sense of being
heard and understood. 'Few speaker further oh.fends Iiis

imprets.sion (which even in real lilt- 11135 illusory) by
attributing to bit conversational partner ill t-ort, of I ittek-
ground knowledge, insight, :tile rett,eitting a bility. I tut again,
these are the .spcaker's contribution to Os' conversation,
They manifest themselves inferentially in the int/ rprdeli.eoz
he umikes of the otTcrixi responses. From thetnirely tecluical
programming point of view then, the psycliholi niter
form of :Iti ELIZA script has the advantage that it elimi-
nates the need of storing explicit information ah411i tlo
real world.

The h tman speaker will, as has Ixen said, contribute
notch to clothe ELIZA'S responses in vestments of
plausibility. But he will not defend Ilia illusion (11,:o hi, is
being understood) against all olds. Ire huw:ui crnnrr alien
r. speaker will make certain (perhaps gvncrion...)
lions about his conversational partner. As bong as it
remains possible to interpret the latter's n-lson-l., rnu-
sisttntly with those twumptions, the speaker's image of
his partner remains unchanged, in particular, undamaged.
Responses %%Nat are difficult to so interpret may well
result in an enhancement of the image of the partner, in
additional rationalizations which then make mon
pileAttsli interpretations of his respotiss rett,ontible.
When, however, such ratimializations hiceninv too inassiie
and even self contrailictnry, the entire image may crunilik
and be replaced by another ("Ile is nor, after all, as smart
as 1 thought he "lisii-1 When the conversational partner
is a machine (the distinction between machine. and progrmt
is huh. riot ueful) then the idea of cre,111,11il may well Ix,
substituted for that of p,ausibility in the above.

With ELIZA a the basic vehicle, experiments nil) be
set up in which the subjects find it credible In tx lieve that
the responses which appear on his typewriter are gi ncr
ated by a human sitting at a similar iteurumcnt in rt,!fll her
room. How must the script be written in oiler to maintain
the credibility of this idea over a long ix riod of limo?
Ilow c5 t the performance of ELIZA be systematically
degraded in order to achieve rontrollol and pied;clatil
thresholds of credibility in the subject? it, in ail this,
is the role of the initial instruction to the 111,j(et? On

other band, stifitoe the subject is told he is ccrimuni mina
WA a machine. What i+ he led to hlieve about the
machine as a result of hi, conversational 4 xpericnie with
it? Sortie subjects have been very bent to tom inee tleAt
ELIZ. (with its present script) is 1,,t limn to. Ti's 1.
striking form of Turing's test. What exile r'rneill al d. - trim

would0 ro3kt, ii more neatly rigorous and air0Q.lit?
The whole, issue of tb,e rn-,11.11ity in 1,11/11-0.,)

machine nntrolt oton. 11.11.41:it,t

(kions it nasingly trio! to t-.. II- in n -ponse
pit(r output. The ultimately- is sponshile r
vete r of "Whit the roichtne sae tot nr lil,t 11,
correspondent with It ZA, constantly f teed with th
need to make cnsliklity judireia 11.17A sicn-, if
nothing else, bow easy it is to t trate aid
ibisicvn of understand hence p ihrps of

olivine 0 Nilinher I'"++

4b
deserving of credibility. A certain danger lurks there.

The idea that the present ELIZA script contains no
information about the real world is not entirely true. For
example, the transformation rules which cause the input

Evers bode hates tile

to he transformed to

C:111).11 aita.uhe in particular

:WA ether such arc based on quite specific hypotheses about
the %weld. The whole ..rim constitutes. in a loose way, a
model of certain aspects of the 'voila. The act of writing a
script is a kind of progranuniaie act and has all the advan-
tages of programming, most particularly that it clearly
shows where the programmer's understanding and com-
mand of his subject leaves off.

A large part of whatever elegance may be credited to
ELIZA lie,; in the fact that ELIZA waintains the illusion
of understanding with so little machinery. But there are
bounds on the extendability of ELIZA's "understanding"
power, which are a function of the ELIZA program itself
and not a fu client of any script it may be given. The
erticial lest t:t understanding, as every teacher should
besets is not 'lie subject's ability to continue a conversa.
lion, but to draw valid conclusions from what he is being
told. In order for a computer program to be able to do
that, it must at least have the capacity to store selected
parts of its inputs. ELIZA throws away each of its inputs,
except for those few transformed by means of the
MEMORY machinery. Of course, the problem is more
than one of storage. A great part of it is, in fact, subsumed
under the word "selected" used just above. ELIZA in its
use so far has had as one of its principal objectives the
cescoitmest of its lack of understanding. But to encourage
its conversational partner to offer inputs from which it
can select remedial information, it must reread its mis-
understanding. A switch of objectives from the conceal-
ment to the revelation of misunderstanding is sos-n ca a
precondition to making an EIAZA-like program the basis
for an effective natural language man-machine com-
munication system.

One goal for an augmented ELIZA program is thus a
systi to which already has access to a store of information
about selue aspects .1 the real world and which, by means
of conversational interaction w ith people, can reveal both
what it knows. i.e., behave as ati information retrieval
system. and where its know le lge cats and needs to be
aligns rued. Hopefully the augmentation of its knowledge
wilt also he a dirvat cfll..eqiicnce of its conversational
cap rimes. It is Jr e(isely the prospect that seeh a program
will es-give-see, with messy ptinple aryl learn seta-thing from
each of them, which kale to the hope that it wt i prove an
inn resting and cacti 11,4 fill conversational pastes r.

One way to state a slightly different intcrineliat goal is
to sty that ELI/.k should he givt n the power to slowly
bull a nyslel of the subjes t (ones rsing with it If the
snit (t t itentions 110 he is not marries), for mimetic , and
later peaks of his w ila n ELIZA sbe.u11i be able to

rantne S I :SoIrraxt 1 jamoat,t, VOA
4 ,

make the tentative .e.rerence that he is either a widower
or divorced. Of course, he could simply be confused. In
the long run, ELIZA should be able to build up a belief
structure (to use Abelson's plarass-) of the subject and on
that basis detect the subject's rationalizations, contra-
dictions, etc. Conversations with such an ELIZA would
often turn into arguments. 'Intim tant steps in the realiza-
tion of these goals have already fawn taken. Most notable
among these is Abelson's and Carroll's work on simulation
of belief structures (H.

The script that hes formed the basis for most of this
disetessibn happens to be one with an overwhelmingly
psychological orientation. The reason for this has tilreaily
been discussed. There is a danger, however, that the
example will run away with what it is supposed to illus-
trate. It is useful to omember that the ELIZA. program
itself is merely a translating processor in the technical
programming sense. Corn j2) in a paper on language
systems says:
(see', a iseguage %dor% already po..csses corder,I, then
a translating proCCFF.nr, even if it operates only syntactically,
Retaliates corresponding repressions of another latiguage to which
we earl attribute as "rocatat,ga" (possiltly mutt titlethe ',shoat.,
may riot he one to one) the "semantic intents" of the t;enerating
source expressions; whethe, WC fur] the result e.itisistent or useful
or both is, of eotItge, another problem. It is quite possible that
this method the same syntactic object language can be u.sfuily
assigned mull uric Intailink each essrsssies,

It is striking to note how well his words fit ELIZA. The
"given language" is English as is the "other language",
expressions of which are generated. In principle, the given
language could as well be the kind of English in which
"wo:d problems" in algebra are given to high school
students and the other language, a machine code allowing
a particular computer to "solve" the stated problems.
(Sec ltobro's program STUDENT (:3I)

The intent of the above remarks is to further rob ELIZA
of the aura of magic to which its application to psycho-
logical subject matter has to some is lent contributes,.
Seen in the coldest possible- light. ELIZA is a translating
processor in Gorn's sense; bows ver. it is one which has
been especially et.estrueled to work well with natural
language teat.

I 1:11-1.1t1tNIMS

I..l1.Et.sos, It I'. 1s.n. r. J. it. C,,rpufrf 5inndilion
.1 intiivittust sstria. cr Pak it . 9 :Stay ta..St.
2 4 -30.

2 ri his, S. Sf rsi tie rilinn-r,.1,1 i0
tar.aurtse stain.. Pater prr,r!lot in VI. .11z-bnile
I-'r Rwslir 11(..ry. lIchricw
.tie 1964.

3 f; f r n r, vest r ta,itt-
tern ,..rm. 5101 ,

Carnitrilce, ahss I.1
4 WI IrraP et sit. J. si-,me!r,c es, Art/ s.

ft:sTcPsts. c. leee.'1;'2,,l -7e4.4..sesel 7 rwfrt. fs,ps
on. se nil IP 1[.:(0Yr ;t +7.1.

6 liait%r. J. rttillif 11/1i,a. Salt hr... ram.
t.tilrn. 'atlas

.5

Isantrultoet ations of the if NI ri

-47-

APPENDIX. An ELIZA Script

1140m DO IOU DO. P111(1 TILL ME TOUR PROOL(m)

START

(SORRY 1(01 (PLIAS! 0014.1 APOLIDI)E)

(APOLOGIES ARE NOT NEC(SSAAY) CROAT FFELIMOS

DO VDU VALAt mot% YOU APOLOGIZE) WV TOO TOO

TOOT AP0100111 tit ROT RummfOI»

(C0/0 rooT)

([A0.1 Clo'1/

WAY PAN 'T 1

(REoEmIER S

(14 YOU 011(11(1 01 (DO YOU OFTEN 71114 CI 0)

(rots imuifi.c 00 h 4.07.101G Mt 70 MIND)

(MOLT (LS[00 YOU REm(mIER)

1.14, 00 ?DU It(pirmAIR 1 JUST KW>

Imo01 PM 7111 P0IS(57 SITUATION RIvONDS TOO Or h)

(MOAT IS Tot COWCTIOA 1[11111 mt END hs)

DO I Rtm[oPER 01 11)10 YOU To1.11 1 MOULD IORGET SA

'WAY 00 YON Tmtht 1 SmOULD RICALL A NOW)

(VAST 41007 11 (oA7) (100 DIOTILMED 011

(IS/ IwfW4I,/,)

I« 1 ((0 (r 03) (DO You 0111.1 ITS LIPFLT ZmA7 5) 00 .MA NIS. 7.07 1)
(OMIT DO YOU Toltt 400.1 31 1 LLLLLL Ill)

(OMIT DO ?Du ToINR APOQT 3) MILL?, / 1111

IDMIAALT I 110 TOU DIEANT pi

.1 (MAO[YOU CPER AAAAA 110 I MOTIF TTu u(AF

(MAWR VOL) DI/ANT h 0E1041) I.Dttim, 1.4.10111)

01(1mED DREW h 1.DRI.TLI
1049m 1 1(4) (MOOT DOER TILT Co(t. Sv0GIS7 TO TOO)

(OD TOO (MAN cITINI (moAT P(IOOo(APPIAR (1 YOWL P010.11

1004.1 YOU PIOIIVI TTA1 ClIA. mat 1GmE7.11et TO ,0 NIT.

TOOL PRCO(E.) (tI111)()

ICRIAAS 101Elo 1 DIEAN(p

(m,11)1
(w.q. (.MOLT))

1 AL IT 33 .131 I)

(14.E LO 1131 11 I

(111TAITILY 1.11SIL

DLIS71/11(11)/

(TWIRL 11.1rp/SFLII011

111(1111 011111/01.0(11)

(N)S. ALAST(/11111011

11(101T MT 11 TOO I 1.111 tISCvS1 4110.18 0.1 TOO 11

(I TD.I 4 (ARAM TOV DM10 TOO! RI

(4 TOL* 1 4L1 TOu4 11

11 TOL1 1 . Dort TPA? mar(AtT1.1.4 TO TO MITI To(FOOT 1011 Dl)

(ACM(((1) IL A. NOT Dull 1 LOOEISTIN TOL FLALTL

(P1(111 44 ON)

(m.A7 0:11 7.0T SLGGIST TM TOL)

(IC TOV ;Tit t14,040 4.007 DOICISIING SvOm 1.I4pt)11

(AEILAPS 1(11 (TON/ 0:5'T 1FE1 WIT(CAMTb)N)

(Mt, T.I LOCIATAPI 1[041

IZAR'T TOL/ It 1011 ODItItT11

ITOV 101N71 OCCT YOU toCrIll
0.1.1(pTIMNAP111

(lt.(LS (111 (I 4.1 107 111(RtS710 II 101(1)

11'0I 1DiD flu ((FOR(, 1 o[,', Dm 060 MIKEA

PATS((051151)))

11(.1(IWITA.(1) 1

ITt.TICm 104(mO1)
1101%:A1T)rrif-))

(LTALI WU (.1,0(.711

p(sTA.Ot (.e.lim:1)

($.01m, 1111 (p Am S!.0", 1 11114 (ML' 0s1LISmIll

11.10 (111 (ND. r: TOO rc. ILF0S1 51174 T^Ll Pipt.LP/11

101.1E1 59 (III (CO 01111111 4PIT TDL)

lmT 00 1:0 .(01C1 10.01 7[111 (OMIT DO YOU ?mime. m40.1111

may(TO DO RI TM TDLA 01:0101) 1101'T TON T.7o. COmPU.11 (II

PUP P000111 cw.AT 4.011 p.AmItIt 0101111 TOWS ONO,

25. 111111 ATO,T

,,m1(01%1 ST

.1T,FMS ST ttt..01.1[11

I[D.011$ SO

III ITT 114 AID YOU 11 100 YOU OINIIppy TOM Alf II

(nmmanitelion. or the ACME

(wOULD YOU WANT TO Mt I) (TOO will I WOULD 'ILL ?DU YOU ARE II

(MOLT UOULD IT PEAR IF YOU WIRE I) 100111

((0) (WWI DO VOL SAT 'Am') 11 DOR.1 LAVIRS10.11 TWO)

(III I), LI« I 0 1

(LINT AA(501.1 100RISTIO IM Imf11) (Am OR MOT(

110010 TOU PRIM IF i WM.'? 11 (PERoAPS I AN t It TOL.

14410SIFSL 100 YOU 100.171mIS 1011.11 1 Ao tI 10I50,
((0 ARI 01 (DID TOO WM(111(1 11,114? NOT TO t)

(WOULD YOU LIRE IT IF TmEY 0111 NOT 11 (MINT If T.« MERE MOT 11

(0OD(IILY TWIT ARI 111)

(TOUR NY (10 MT 0) (MIT .1(TOO CO.OFR.EM Dv(4 MT 1)

(MOLT AM, TOUT Om% 1) (ARF TOO NO11410 0.041 1.1.(1.! ILST(SI

MALL', MT 3111

;OAS 1 110 110 YOU . I

(MOAT IF TOO WIRE .1 (00 TOO ?PikT TOO WrO(P)

(Wilt IOU t) (MOAT WOULD IT pal% IF TOO 004(II

(Poll 00E6 h SUGGCST TO TOO) (HUNT)(

(10 TOU MIS 11

(WOE TOU ;'EALLT) (MIT CO TOO TILL MI TOO tall 1 4;11

CREME TOO MIILLT((MIT DO TOO TILL mt YOU w(RE I MCI(

".14HAP1 1 ALREADY 1110 TOO o(III h) 1

((0 WAS 1 0) (WOULD TOO Litt TO ATIII.0 1 111 11

(wHAT)LGGISTS TmA7 1 Pi.3 IP)

(IOW DO TOO TMIRI((010APS I HAS II

(OMIT I MID (III II)

(101 ItItTET)1

MERE MIS (pomp

(MI TOU)

(To.01(I'M 110 01 (PR((I Al(11 t.700())

(I'm TOu'RE 111 TOL'OI 0) (FIT (.Of bat 31 (.1)011

t5 RI OL AAAAA 1

(TOORSILI AA

(107111 OL I 1TFANOL% 1111(/))
(.'OM MOTOTO DLI1T1A 11.11111

ICAO 001014 00117(0 fAmILT11

fIAT,411 0041(/m00p 4'0101)

(511710 0L1T(/PAPILTL)

11407114 0(11(/14mILT))

(OF(OLIS1(/11.110))

(CP110111 DI 111/14.1 (T) 1

(1 TOL

(11 TOLA (I wit? 11(01 0) (OMIT 140'0 IT .1.. 10 TOO IF TO.,) A.C1 h)

Iwo, DO TOL) MART hp (tont(YOU 007 h 10011 (W.A7

IF TO. LOW GOT h) (wm,11 WOOLS 0(11I10 I .(14 TO

TOL) (WRIT DCIS MAITIOP, I .1 TO M W,, 111("AittS41001

1(1 TOY 4,I I SAO Uto0.01 CfP4FSSI, 5101 11

11 14. SCAT TO 1100 TOO 401 11 110 IOM ?,i.% LOUR'. mft1

Mill PEL TOO POT TO IE 11 (I'M Sill I« ROT PLFA I yhT TO

IF SI (TT% NU ((Iwo 4.07 mA'F TOO 11/

111 1)4 AM(4 (..APTT FLATFD GLAD 411111 (11

(C4 PAT(0 LIMPID IOU TO II 11

(mtS TOO .0141.101 'WI TOU SI (MIA/ 11111 T1' 5 (5

WOO) 11,1% TOO ()ALAI% NOT TOO III 11t."110 511

i14 TOW OAS II (011)

111 TOM PAS OT (.MIS!)

II0 TOO Ir5f1I(I) Ttv 0) it0 TOO raLL, 1.111 5^1 100T TOO ,*(

NOT 1.44 TOW SI (00 YOU 4111LT DCLP7 0i) 0))

(11 'Du I IfIrttlII I((..00)1

((I YOU Alt I(

(TI II IICOL(I TOV 10(I That IN [AI(1^ IT)

(MOW LONG PAM TOY IFIW II

I00 TOLL 1(1 1 11 (7 .ARIA(TO II MI

(DO TOW 10(01. grow) 5)1

«),, II WO? Caogott(0) I M TOO (II", I)
(MAT[TDV TM I 101

ITTT.TPS TOO (Dolt I PC.)

(00 TOI) DIALS, LAW TO IF A01, 7D h 1 1

((1 TOW OCR') 9)(DOWT TOO R/AILT hIpm., D's'T II

(Do TOO Et' TO 690 TO 7.0 'IC./IA 0%11

Ita ?Du II (TILL II Z0I A:L1 1.00 11111W41

(D0 toy DOTI% 0(11 11

(to YOU (Rh, Mil (4 II
(Cl MAT Nis 0111010 m(ml M .70)1

((I toy I 1 11 14(10t II TC,lI tWASP MI (11:1 O' -(PI

TON MITI TO $.11
I ,h4 sit, T0 larr I" 1 m11

(DO TOto 1 ..Ott 01111

Noltime r I % January.

-48--

1101 1.0u SI. (1

(Cam YOU [(WWI OR 1..ATI 1O0 YOU 511. 1 FOR 5011 !FICIAL OF1501.1

MIT'S QUIT(1141[4(51104»1

IvOU I 110 1 0(.11.0 VOU OF 01 1 .01 111

(10 I *10 01 fmas ohm 100 T.1101 I I. hI

10010 IT 111t151 701 TO sruarr r A. I)

IDO YOU 5S.(71115 .134 .DU (((F I)

1111144105 sou wOuLD LIU TO IF hIl

(10 I 0 vOu) 14.7 DO vOu Twiht 14 7011I

11.01. Litt 10 OPIAK I 1 vOu 00411 /CU(

(*111 Mist) YOU To)hs I 3 YOU)

MILL', I 3 .0uI (00 YOU *IS. TO 11F(Ity. I 3 vnu1

, 13 vOu1 1DO vOU mIS. To FILIF4F I 3 vlu)

1500051 I DID 3 vOU 4.17 .010 /NAT 44(14)

(OM SOOTIOTT (LSI ItlItst I 3 YOull

III I a) twt 1.111 101001.011411 YOU /41M
!C., I 31 IvIOU'Rf 7.01 ((All/ TAIJINT. 17150 .1 Ast 'Du,

AI(1001 11(114.01 NOW)))

MS 1101 1101. SFr. (UM C11114(1 (vnu OF I,Itt)

II 5/11 II U401057.140111

IMO 1101 1141 vDu 511.114 1401 4151 TO (1 41101101

1,011 111 (141.9 A PIT MTGATI411 11.w1 1.',11 (Why 11.0'1)1

(47 /Dull 1 CIO VIDLI 0 ti00.11,) 41

(TILL 1.1 4101 AlOul 7001 FA.11v1 1 4.1 1115F II fOUR tlIlLY

51 I10'.(11 1.1.1 1St 00.11 00 (117.0 lorfi v11. T. I h1 Cr

vOull 11

110 vOull 01 (IOLA 31 04., nn '01.i SAT 7001 11 I1.0t5 1.11

11.00(51 04710110 flit O. It 111v:5 in vOut (IS IT

1.7.0(11%7 TO ADO 1.1T 1 211.

411.4 110 CA4 1 01 IA% ILIFvf ! C114 1 0f101 1.0u1 104.011

1v011 WM Mt TO IF Wilt TO AI 1,1(1.11S VOL) W,ULO LITT TO IF

AIL(TO 16 ,01.1511111 III Ct. YOu 01 1441111wf1 Cl sonT 'DU OFM 1

CIPEMVE C4 YOU OM T.Ah 04 III 11.11 ...d 010 .1 It Alm In 16,

DOM'T (141 TO 11 I ir.AT)))

(W.AT 110) (ANT 00 TN 15111 11.015 1.11 (m.4514154 14114151 'DO

(r.11 IS II IOU 11(111. 1(00 TO 11101))

flit Sc0. 01(51101S KC. Om 400 11111)

1..11 11,01,E1 101.10 PLEASE YOU morn

(wwAT ro 1411.1) (WTAT CO1I TO 1111.1 11/1/1 111 1417)

1410,1 701. AstID UV. atisTicr PI1C11.1

(lilt vCu 15110 Focht 11511))

MC165(1101 (IS 0.11 1.1 I1A1

CC/ 10 1114.,1 1,015 twat (Mc.

1.11 01.111 1115045 mIT..1 T.Ist

1+07..1 IL.' (loll mriv.ys

srf. t, TiTLA14 11.114)11 ILS,0

11,))

lw.v 1111 mv 004.1 I I) (1`0 40) litLi(st I 1,e107 I) (001.11.1 I

WILL I II nOt, 1141i II0V10 TN/ 5 41L150t1 coo 400 of 11 ()

t.h,1v)1

1.wATI1
(II v.' (1417 'CU I) ITO 'DV T.1%1 IF 011, ve SI

Ir0 vOu (AO TO It 111t TO $1 1'0 v06.1 (151141 1.15 WILL 44110 TrU

TO SI I.1vt 100 147 Iris r., /CU C1411 11 1.,1111

I. W.11/1

111E170.1 2 110 (EV(17041 IvIlvAr, 7..1) 0

II ALL% 11 15010 MOT 21 1(114 TOu 1+1%1 0'

fTOSI II AITTIC,LAA) 00111% TOT ITT'0111 4v00 hir Cr

A (14, !TWO
1..0, III I ASK/ IS01C44 PILIAL r(1-1.11

tv0v ...Aft I Ill rl 011ie O(1504 14
fTv, 0, ^O TOV

111111 v0.6111 1111111[10041111

tivtivOIDO. 1 I. 1.14704111

(40137 5 Itvt(704111

1..0041 1 11,10,04(11

1A174s-11 1 1(0) 1114 ,C..1 21Ar (I 1 (1101110 11174141/

14,AT 4.01030 Alf .J 14111.0, 0') ITI.LiT.

TOT, IT 1TA OA. II 111 1 LITT I) 1 or''11

4111 1.44,1,11)

1011 (141 11* 4.11 4AT) 1..11 AfIl*LWT ^ ICJ

(4.110 001.1 fTAT 3,111.1177 5,OT,15. 10 4011

44.11 C7.11 CC4/(11C7.S fC vCu (I))

10.41 co tcv S1IOCT1 Toll 115rOLA.CI fAf;

100.11 11 r.t teRmtiln, (so s,,o7(1)

10010 Toil 11ALt1 II SC.! C,47.1111C4/

1:y111

11

E.F4 41.11 0(11) '111,

I Motile 9 NumIrr 1 / Janua-,. 111'6

-49-

Contextual Understanding by
Cominiters

\VErt.I.Aittrq
.1his.ar base Its. 1,1,00 tof Irr(bnobvg ('ambridge, Atli...N.

A further development of a computer progrom (ELIZA)
copobte of conversing in noturol longuoge is discussed. The
imporionte of context to both humon and mochine understonc
ing is stressed. It it crgued Choi the odequocy of the level of
understonding ochieved in a porlicular conversotion depends
on the purpose of shot conversotion, and Oros obsolute under

onding on the port o' lisher humons or mothines it impossible.

\VI. :Lri, 11111 (1111'111w I %V. sontantic
pavrii tau tc\t.

1 1.,,11111),.4' Ill\ menlrrrcm mid paragraph- ill Ilre belief
ticit 1 ..11:1111 la 1111.111.1r.t11.11 INIkL11, th:LI 10131

1%111,11 here Is ill irr.s. per:ono-ivy. ror faith to 1e al :III
meaningful, I I 111,4 11\ p.11 lirsIN, at 11:31 r1111` fll`a it'r .111(1
1.3Ir slunk iif hal I niukt

piie i etcail) that no. re:dui- \\ ill re.e..gtiie p::tterne in
11 the 1.:1,i..(this rocognition, be

:Ii.11 .01 t1111`.1111' t11\ prr..CrIll thought for him-elf. 'Sok', the
x trueturc .1 the word fi CliglI1/6 ." I

\v,,r.1 "recrate.' i hi< iouzgc,Is that
the tr4viti- 11;11 ill Ow cunt
norriaaIrrrri. IIr Ming- mrimthing of to it. Nis
mideroanding i a function lit ghat .soiriething vteli ie. of
c hat Na tiro n In re. I trill rctitrn Irr this

cf the motivation for the work lute
Iriiyi from aitompts to praigrant compitti r to 111.1111-
0:01 %aka :I 1,1 11.11.11,..isOrt NI\ III it. 14'''t it be tilhoutiler-
-to.1. 111 111111' t:114. belt WA\ that 1l3 irpUS 1e the

11. 1 ire \ pr.\ VII 1,11 No...Ages ecrtainly not
I uman the effect e,tahti...11.

mg a tiairimcr chiral 14 ermillstiir,diori than Ilmt a1-:+i1-
:11,1e 1.011[111.w- III I Ile I:. I. r.
t......\ I1,:.1 1111.111y Air(Ind(rIntirlirg are 0111-
11.111,....1.1 LI K. -IMF-. 1)11,,I),11 Ti0 (qt. 11

.,1 :Or II II 1\X' I,. tc.11, r- On.%

loon room

V,11, vol.,1,4/1 11 irk NT, 1.4..jor .\11(..?1,1
1 II V 1n 1. 'O.' 1,11 1,1 r 1 11 I:.

t. oto IA writ,,4 141-fril,,. m. r NVI
Ird, N0,1 II 12111.

171 1 ono, llllll ion. of the 11 M

D. D. BOBF',OW, Editor

%%iIl I,r rctlort 111.t+ not brit l',11-
111S(4 I With mcilyi.,. In the
:iresent ,ituation NT are ronrcrnrf with the fniginont. of
natural language occur in conver...ations. not %vit h

complete texts. %ve cannot rely on the test,
we :ire analyzing to he grammatically complete or (lit-rect.
Demo. Tilt therm' that di petal, on icir,iiitz of prionualily
".(11-fortited ,erit once,: can he of initell help. \Ve ilc
pond otl beuri.dic, and other uch 1.1.1.11r. intcar

The 14..1 iir.grairs II s+ !rich 1 sviII to call ;omit iror
particular incniher of a family of irrogranr s% }rich

coin', to Iry Lieal, a, II)0("1t
them. fir grant 14 ELIA. WOW' WA.. (10.111 1 1(1:11 1

I111.41' program,. like the Eliza of I) gnialion fame. riot
hr bsrlszbt to pr-ali inereAingly lycll. 1E.1(1.1 llt calt.c
E1IZ.1 to respond roughly as %void! certain

(Itogerialio. 1:1.17.,1 perform .. lic,t when it
corre,pielciit i, initially intructe I 1,1 'talk" 1,, i1, 1.1.

O.:, 1111(1% ril(T, Ilf one v.,111,1 to :1

iri t.
I chJ1-4,111 111,NIV if elJTIVITAll,1111R1'111J' 111111%1111:It t it

iritcreicly j, Irtre of the few (.virple If e iIi g rriz,.l rly,r.fir
natural langinige C,,11111111,111'il 1,11 in %%hie?, one of the
participating pair i.. free t11., tolossiirg
almost nothing .f the real world. if, for cvorrirle. ric
%%(re 1,(W1 p.,c1.I3ttit ,A ri aria
reporirlisl TI"?

11+.11 hr kin +c retiring of Tilt Iw,:rl 1,,,f tlr.rt L1. 1,.1 the

11111111il'ilt 4' 011'1 t.111.,11, II is

imprt:itit fo 11te tlutt I hi, a111i11,1 001 1- e.+' nit I. by lice
11'110111T 11 I, IC:Ilitle of i- ;111,g,cl r

scpArate ill any I ie. it Ii.I. .1 crnri;ll
ir,sclurblical wilily in Ih,if ii `A 11..1k1r trr
tail' Iris men -s of Ii-ing 11,.4n1 aid snub r I. :On Iu.tkcr
further ricferob Ia. imprc-ir,n frrbrris sArst in rill Ilf(in.%)
le iIIii 1 by attrilorti..g 1. hi, p.I1 Int r

all .4.41. of IrAclii.erritrrl atirI tr a.roarre
Arai.. Brit ziglior. 1111-c ir.e the r,riatrbwr,,,, Io
1111' orris(s in.u4114 -I 110,414-, IN, .1141, I, iii rill it
1111' Ito ..f I 111.1iIli 11.1 -. 1 f..1t1

the blip torlmic.11 vr.granallirla p is t ..f tit %I,

it)/16.01,e 0011'1'1,11V Ific it
1"Tipiz 1114 ,i}w till.

11 r brill.

The 111011,0i 14 .1,1r 1%111 cr.rrir.b.tr Ir Irr 1,1 11.

-11;-4 , ItI 1^111tI.I it1 t ,

1% itt d(ro Tr' 1111;1,... 1111 t. i- ,4 rirrrIrs-trrrI,
nit:sill-1 :11 r!rb. In hurrah rr.r.sr t I,r, r vldl

1nIume 1i rrintri, II n1 11. 110,7

make certain (perhaps generous!) assumptions about his
conversational partner. As long as it remains possible to
interpret the latter's rely oases to be consistent with those
assumptions, the sireaker's image of his partner remains
undamaged. liesponses which are difficult to SO interpret
may well result in an enhancement of the image of the
partner, by additio trial rationalizations which then make
tia Ire complicated interpretations of resinses reason
able. When, however, such ratlunalizations become 1011
1111:44,....1Ce and even self contradictory, t he entire image may
crumble and he replaced by another ("11c is not, after all,
as smart as 1 tlaitight lie wa.s".) When the conversational
partner is a machine (the distinction between machine
and !ingrain is not useful here), the idea of credibility
may well be substituted for that of plausibility in the

When in converx lieu with F,I,1Z.1, the user types in
sonie statement or set of statements :11 natural language
ie.ing nurnial punclSlalioll and sentence structures.'" "The
user's statement is terminated by a double carriage return
which serves to turn control over to ELIZA. ELIZA then
..owilyzes the user's statement and generates RIM(' response
which it types out ('untrol is then again with the user.

A typical coliversat ion is the following:

Men are all alike.
IN WII .A1' W A Y
The3're al* as bogging itRabOlit something or other.
t'AN TIIINK OF' A SPECIFIC EXAMPLE
%Veil, my I...)friend madr me come here.
1111.1t N1ADV: 'rot ('(INIE IIEItE
111,, sa)s I'm rtrprersrrI mooch of the time.
I AM St/PRI To IlEAlt 'tuft Am; twritt......srED
II'ii true. I NIn wihapp.
Ito Vol' MINX ('oMINI; HERE WILL IIELP rill' NUT To

IIE UNHAPPY
I need some help, that twIch s-rerns certain.
WIRT Vol'I.1) IT MEAN To 1-01' IF' YOU GOT SoNIE HETI'
l'erhaps 1 could learn to get al..ng with my mother.
14.11, MOItE VoCli
My n..ther takes cAte of me.
V(10 1N York FANIII.Y T.1KF.N CAW; IIF' YOU

labor.
YoUll FATIILIt
MIIAT 110 YOU sEL
lot are not .ery sums...sive boot I think)01L don't V. rat Lo

IT ire 0131.
IIAT MAI:E4 lot' Till \K I AM NOT VEItY icedrEszost'a.:

You .non'i logo:p with me.
s'llY INt 1-or THINK I ImIN'T IIIIt'l: ITII l'oll

are afraid of me
WE:: IT I'LL 1-1; 101- TOM:1.11AT. I AM An'. kW 14"i111:
My 1311K r (v,r)1..1y.
1%11%T 1.1.,1: 11)NIF, Tii miNo wIEN 11)1'

hotel! F11111.1!
It
Intl s TIIAT IIINI; To Do NMI FACT

1 II 1T lot tt Nil 1:1'.'.NI) M 11,E II' ONE. ('Flit:

'Thee:wit:duos] blast are the machiew respenscs.
I described the original El IZ.A tore.gr sm in some detail in

[no]. Io.r the present it is sufficient to r-scall that E1,17..%'s
0.11.111,:1.1iMill 11,1%4 are governed loy a Ar/114. .1 script
consists 44 a set of key IN cols and key phi's...es each 14 which

Ie. It 10 \ limber ft / ioqut. 196:

-50-

is ass'. ,ciated %%lib a set of so-called decomposition unit
reassembly rules. A disc/imposition' rule is a ,Iola stro out live
which searches a text for specified patterns, and. if suet,
patterns aro furond, decounpuss the to.xt into o obsjooiro

constituents. A reassembly rule is a SlaVilleatiolt fur the
construction of a new text by TrleafIS of reeornbinatiuns of
old and posssiblc tidolition of new constituents. front nip
point of view, an ELIZA script is a program and I :1,1Z.1
itself all interpreter. From :mother perspective,
appears as an actor who n111.4 depend ,cripl f, Iii'
lines. The script determines the contextual framework
within which ELIZA may be (Aut :101 111

plausibly.
"The gross: procedure 14 the prxigrano is op lit 4' simple, I he

text read and inspected for the presence of .1 key II,M11.
If such a word is found, the sentence is transformed :u'
cording to a role associated with the key wont; if loot, a
contentfree reicark or under certain conditions, all earlier
transformation is retrieved. A rule-cycling Itucenan.in
delays repetition of responses to identical keys as long as
possible The text sit cum pat (11 or retrieved is then 'united
out."t

(Inc of the principle aims of the II)OUTI /It program is to
keep the conversation going even at the price of having
to conceal any misunderstandings on its IM 11 part. 1Ve
shall see haw mowe ambitious objective- are realized sub-
sequently. In the to wanwhile, the above 41.1,CLIN,1011 already
provides a framework within %Odell a iiitailwr uselid
p,tirits may he

bly far the most important of these relates to the crucial
rule '70rotc,r1 Oar' iii all collver`allr'll'. The s:tbtjiet who is
about to engage in his first convirsaii.iii the
IX)C1I/11 is told to lout himself in role planing frame of
mind. Ile is to imagine that he looLs some proolotam of the
kind one !night normally discuss with a psy chiat Psi, to
pretend lie is actually conversing with a psychiatrist, and
Wider no Circumstances to deviate from that rook. ll'hile
sofa(' of the responses produced by the program are no it
very spectacular (Nen when the sobject bottoms his instruc-
tions, it is remarkable how quickly they deli rio orate when
he leaves his role. In this respect, the pr. .$1,ra in mirrors life.
Real two-person conversations also dego iterate (% hell the.
contextual assumptions one p;lrlieipant is inAing nigh
r...Aspeet to his partner's statements rs.a..4, to I,,. vat 'al, This
phenomenon is, for example, the Nes:, the jairt,
comedies of error are built.

These remarks ;ire about the !gods,/ coo. Nr iu \duo, the
conversation takes place, No undo rstaholo,g is oo,

the Alt...knee of an I ,Ia/./.,;)ed gl..hal ront,I. To I, sup,.

strong. rs do oars t, r-e, and moiorsliatek noRto no-ood

one :moth, r tor at bast Is I < t r t Ill) ill. It' II t I 11 1 .1,11

The c,.pertoirm it the c.1.1...r..4 the pf 10(If
iii rrtrnitlir g the th, r 111
V..1 9. N., I. 2.11, ion. irsofs, I, 0,, s Fir 1[Ti.f
arko. -fledgel

fnmninnitI ion or the 11 M

-51-

iii a shared cultureprovided partially by the ery Iaii-
gliage they speak and, under any hut the nvt trivial
(ir((iIIlt(Fi((., (((gage lii 1 kind iii hiiiiti:tg Iwliavir nliidi
lt:i. t it iljt tIe crcati,ii .1 a cuiitcxtu:il Iraltolvi Irk.
(iiivrat itt f1r .zii,t lily iiiy aft (Sr liiv ireliiiiu:tru's
Lit eiIl(iJl(tl liii ituatioii I$ (ii ilifftreiit (11th respect ((I

\oiI:Li l:tItirr r(eigrliliciTk t viu:d 1attrr (na) appear
iitt(iIv (lO(I(, itittil it (',litCXt (('itlilTi (Illicit it ITII Iii'
riigriol (qi:i ag: ii i.e., uttIeritsiil) IS prIviled.
'.i'lv lieu, if ('iT!te, a silitare .bscrvtr (rnvi it LIII

in iri:ttl ci ritt.t Iv Ioiiiiing aiiil test iig a ,inmtxr iii
hyikiih. lie ni:ty iater iliseover that the pattern lie
r(eigIi1Ml'' Was hut the ((Ill' lic uVtlS iTltCTI(k(I to iwe,''

i.e., that lie 1ylthisiicsl the wrung'' eu,itc.t. lIe nia
iqs ii' eurn.tt' liatterit (('lien given the 'c.rrect'' e}Tit(.\t.
Ii ilu,,i't il(t'ITI nub (ii say that tile Itt tern it' i.uCii intl
'tieli. We iiiig)it, fur (',i:IlIiiuie, (miii a .triTig ui (liiiiusi'
(li:iI':t('ier' li('t(ItlfItl t lung as we hint knuw what they
ii'll. 'I'lii, iii alit rent iiniuuveeediiin'iit, ii., really a

luru:ih'ititug. ui (Iitt't il1 eiihaitee the etltetic atilural Oil
Iittt('rIi. i':iiiilariy, (any eple think aiiyt)tiiug sail iii
Ireitli i ('li'rlliiuig tTII ((IllaTlile iureci.eiv h(,au1' they
.1 TI't un lur tilt' I the liligilage.

lit r&d c.TIv4'r:ttiiTts, ghih.:ih eiiJt('.\t (mgTts inetTlilig to
((liii i lilug .:iiI iii univ the inut g(rl('rti (VLIV. ilie c.'ii'

II hr il tl liv et:ihuhiiiiig stil ittvxt5. iihu-ithu

eiriti'.t o thin thi's', awl ui un it gt'nt'rttes aiiul, sii lii
speak. ir:tversis a (3llti'\tU:ul tree. hhgiutiing with thw

ti1uliii',t it ittitith lilIP, 1 ((((V ni,u,le reir4,5s{utihig LI

ei.TItu\i i gu'niurakI, ii.t Irill this (liP it fl((V Ii iult' .tiH,
itTil 50.11 ti nIialI)'l(V(iS. (lera'iiiallvtbeciirr'iitl: rIgretnit
it it hat ttiitl IC. I lii' ((rt'('rut IT A.ciii' (ii a
IrIvi lily i',ialliiit.l iii nh, In rhapt ki11iinig nianiy inter
inchiate ituis iii the iur'ic&... &o bran1 hes ire csta!u1Nh(I
anti cull i 5 al 3(91 ttt It is iiiv Ci 'rtjeetiire that an a'taly
sit if the 11:ttt(riI tired Iv a given eiTivi'rsati.ni thirutighi
iichi a itirect.l grahi nina) yitid a nneauTe f what ne

iiu gI t call II Ci'. Istlu('iiI ial rkh ness i i the Cu nv ersat i i, i5

('icktil ai 1 cli3ttet, fr (sialirpit', hat a rathrr strrg'ii
hi'irchu:rat r. (uTEtet i ei.ii.stantl heing (hianigust thre&

((j.ju(3I(rhuillilIg c limits hut thii're I h:rllv ui'
r('v(r:tl if utir&ctiii ah,1)g airearlv islit 1i'hc'i (tiictir'.
LIii' tmitvt ritioni is luie,t11ti14.nit ti 1TI that nthlung hwitig
aI h any eff':t iii any ijiJPtiiTi5 rated en a higher

level. (iuitrist ihii w itli a ltcussji,ii h'toin say, to'
i'h irit tr ag ti en', Ii inslerstanil the ru-tilts 'f s

i\ H rum nt TIim'mr c liv r,ali'n tree 0 ill Ic it t nh ukt'1i
III hr 'I at ((I hi. ii il. 0 1 1 :i-c ti ti 311 iai taT
(mliii alt ml I al ii mrlu r tm gu nh'181e na a Inhi lr,uui (ii I'
'iii' ,:Iiu;i thu ii re. ijat r-.ti,.it ii f1i)lTltI'h uc'. . iiii
(tilt (((It ii it thi :iciichel dick i) the m.rigival

'nit', it',, ilit th. irt' CuIui t:mlkTg ImitI liii ihi\
i .li..

lit iii 1111(1.1 il the hull if a (ilial r-ttiTu ir,'
((lii ii c- nit p' (hi g,t lnii.iu elI- i ?.,!im(.*.b k. lull'
lit '.tm' :mru i if itit' !.l (ill's itti Iii Iii ii lire, Ihi

'tnhtitrIh'I:i Ii hgt l l.gr:i mrg.itiutrai ii lit-i mhIi.

Iui'i 1'.un,m',,,unirahion c'((U.n 'ni 'nI

') ;

a timiuit; (cur exaniipte, in the aria if hii 'iOn ii'fu''ttjuI. lii
Tore ('tnctionahiy laded circe, the slriti'!ijn' iii:t Ii'
tN-'i(' uirgaTtii'.ei.h and ea'ii Citt:iihi Iii:Lil i'ilti:lli't

1 Ct5O enters a C(uILVI'I'.:tt lii lii Iii rig' lii'
stri1(titr& o itht him as a kiwi if :ig.'nti:t.

p'ran's belief striictiirt i a rudru'T ii Iii" uiiliri' lift
('aperiiutc'. All people ha smiiiu' i'Iuiiiilui f,I'hii:LILVu' i\'
Jui'rt'h't't, eg., tle' (('cr' :til tutu 1 III I'- 'lii
eujL,''uii'Iitla' 'uin' iit'i'. if ulilu'r'I:tiilii! Iu'Lm''hi :uii

too htuiiii:tuts iuii1lv lueut'e tIu'' (ri' Iiiii'ipm, itiT '(ii
IthITlILtIls hai ig ill thi sin ti ('1111 jr 0 iii liiy' iii liii it a ru

tinmierstaitulinig eta' LiTtutht('r whir' huh' ru';u'u'iiam li(
differed rauticallv. Sian', in (hip la-i iuu:ti ':uchi f 'miii

lives i itnitUe, (lure is a limit I \ limit we cmii iuinug;ut.T ar
)s'riTI iii iiii1t'rtauii1. fliere I ii ttltjuui:tTu' I1I(';i,a' :tiiuutt
etch If tlitt il u lilt 'l ,uy'ciilui's fit, I i',uiiitj ill uuht,u liii 1

(Ti, ui ulir i'lt':ts tm the hlItI\'u'1-u' iut'i!u' iiiiiIyu't iii
o hiithi tltiit itulatt's itch lie if ii frim yule fur hum'
hujc'ct iii the ou nil.
1lit're eaui he ntui lit :tl nil k'r't ti Iii ii it ii' ii lit? ui

r'litI,le tt u f uTtul('rsfautiihig,
I5uu kr u((' ((it It ('rtainuta 110th Li r- ii thu 'i''l 'tI o limit

lit, hitui sujul i liuti ti 'n1' lii'. 'iii ru' I'Iiu'f 'trtju'TiiT,'
((iii lit i' ('tjiIia':(lt'itt (II hi:uriuug Iii 'lull.' liii '\Iu'ru'ui'',
it i., iireci'.'IV Iu:trrk'rs if thii kirtI that LTtui- i'-jius'i:tliv
In nP, st niggle ig:tiIi't.

i'Iiis is-ite nuiiit lie c.uitfr,uti(tai ii thi'ru' i' ti I.. any :ra'-
tuient t tin what niachuitte titiler_imil 'hug' iuiighit luau.
\Iat ihie thnu'e argtiittItt is inti'iuuiel u ii:tku' t'lt',ir
it it tu.i iuiiielt tuu i'i'j-i that a iil:jrtIuiu iIIil'r't:iTtI' a
u'ucitu'icu (,.r i 'u ntliuhruhi(' ir LI lislil) .uil ii tli:it

tim' tOte i:iumtgrv ii thu htai'huiiu' Li' ((i' Iu.ut ii
the ic3kt'rii thi&"iituuie& tt ihu'tiiii' ha' iii 'I it. I i Iv
(1131 eritiricTi (u hiitiIi3TI tiuiul((,tiiuuIS ;tti(' i,ttii t b,itiitii,

(ye agrs' Ihimit hiluii:tTi" I iIIiIr-t:uul it .' ruth r I.
Ti fli ii, 1iLl(l((tOri 5, 'I'hie u.Iuiruti(-i ((rh I' ''liii It
th.l''' fur it i mph s iOj(0 , \Vhiu mi durel ri', (h' uk f:u

inelimi' uiitt'r-tauu'ttug. o a iitmt-t iut'iut nil r-ttti'iiug mu"
liunite'l l uiie u.h.jietia'e. hi hu. --nt- l,? lIar' v

eirtm(nu i,I;tt 0 uuiichuinii'- ((liar ui r-?:iril saT oman 1

inu-t thu t!ui' nui:iu'huiiim' (u ill lit liii r'i:uui.I thu'" IlIum-

tIerilly oihl l.ucu:i-' thime r('laim' T' .'Ju'itRi - iltt In', it

hii 3IgCimtc'TIt, iii:iluimrmlniat(' ((di i' -nt tu nii,ailiiuuu
(11 e.uT'-t', the lii:tchuinc clii t di 'lul (dli suumlu i!.',i" "
hnmhiu'altv, ic., iii w'i' which an' nitlucfi'ut" 101 vt
;uI' if ihi(' ((a\ S 'ngmtlul-uuu- fm.r ((huilhi iti Ii 'h.ji ha' ii'
u(lml.r.IrImIte uit il (11th tliu'iii. III 'lull ii' - thu IiiuIiiii,' i"Ti''
iii re liti I cii; si thu 1 u hi it mm I, i Tm. mu I n

tub r'tuut'l, -a, ii iii!' ju',uI. .r1,
, 1(lu n-u. C 1(1 i-ttt niu ty hi' "el 1mm bk dug

1 n a h-tI 1tltji'1u.'ii' k.. i ihi"i'(i iui'Ii (ru thu iTi"e 'f

'ii rir) ii itril unl Ti thu-ir 1 ';.ii (u- 1,11 'trIm'
liti'-. III r "iili (in iii'tuiurm- ii mi(1-uhl''th ii..'
iii. ru'Ia a 'it if liii ,inl e'njuici'I ntsl'- i''h(u Iuliiii tm
ihil' e.'nnnui,rui(Iii II lIlt .1 the 1i,ini'i If'' l's if 'iii,'
iuu . 11 -ad ((luau outrun i' liii nm-haiti tm ihur 11119-
111Th, it itir,Iu,mI.l(h'i''i"&- lhii'I,iii lii, In ii f"T,u' tin'

'. .'iu.,,,r in ,,mu,I- n , otmh-t, U'nl

hello; made explicit has not been consciously verbalized
wfun., or has never Itvfore been ;ittaellest lu t he higher level

Mode su which it is theft Collided ill that conversation, i.e.,
seeti in that context, or hee:111Se of the implicit support it, is
itilting by being found to coexist sometme else.

liacktracking over the coriversatium tree takes place
when a, ew context 11,4 introduced and an attempt is made
to integrate it into the ongoing conversation, or when a new
connection between the present and a previous context is
soggestel. lit either case, there is a to reorganize the
conversation tree. (karty the kind of psyebod.herapist

by the DOC'Ut)It program restricts himself to
tioi la' ng out 'Lew corm opportunities to his patients.
I sin ipose his hope is that any reorganization of the con-
versation tree generated iti the therapy will ulti-
mately reflect itself in (.4re:1)0141,g mcxlifications of his
patients' belle(structures.

I now 111111 back to the program reproduced earlier. I
hope the realer found the e,itiversation quoted there to be
smooth and natural. If he did, he has gone a long way
toward verf)ing w hat I said earlier about the investment
:1 V11111:111 wit! make in a conversation. Any continuity the
ee.ider may have prceivol in that dialogue -excepting
only the last machine response is entirely iliusionary. A
areful analysis will reveal that each machine response is a
respilise to the jest previous subject input, Again with the
exception of the 13,4 l'elitetlee, the al,ove quoted coliversa
lion has no subcontextlial structure at all. Nor does the
description of the pr,,g0.10 given in 161 give any &Jeri 38 to
Low st11,Volile\t' might be recognized or established or
num intinol by the machine.

hn 14,1 it the ,Illw.litet issue, 1 wait It, restate thy;
uver:at! strategy in terms sonic:what difTereot from those
ilsol above. We may think if the 1 :1,1Z:1 script as estab-
lishing the global cohilAt in N1/1411 Stlbr:{1111011, C(011VerSa
Gal. 1\ di Icc lohyol (111. The IX)(TOR script establishes
the Ifogi I") ehiat rie context. The key word listings Aro
guesses about what significant won,da might appear in the
,11,jet is ittltrntnces. The appearance of ally of these words
in :In input ItlitativelY directs thesystcm's attention
Iro(1,1-Ifil...111"ti ricks associatl with the identified word.
111, se nil's are l,\ pothesc. c alk,ut what an input containing
such words ought Inc ;it. An imp Tilsit property of the
.yeti Ili is that just as the entire set of key woixls need not

arthof in the analysis of every input sentence, neither
s the \Ault list of 11)p ftheses about what any input

iinglit total, have 1,1 he 1r,101 in ordcr to generate a re
I 3 `114(1f11. Falco(e. Should the set or hypotheses

assn, with the um-Italy regnant key word 1 ex-

liatisnd wale tit son e, ss, Ih, re 1.1 way (although not here
1,, ,s,11, n rules ris.soelatot with

t r,0,11,1 e. toy wools that r,, y ha\ e appeared in the
11.)011 ,1111,14.

111, h i, 1,111,i 11 al ,11 iiI inpul 4 lottlife once it 1113101(1;
1.11 If. f,t NArOnle, the rule

!it (I A)i i11,1.) 111111NKS It)

-52-

matches a sentern,e, then we know that the subject matter
is a family member, and that this person (The
notation "(,/ A It Cr 1111Ali. 11111 111 0111 position a word
"1:Ly.god" with any of the s) inhols A or if or (' is looked
for, Words are tagged as part of the script. This mechanism
is Spit further discussed here.) A reassembly rule can sub-
sequently identify the family menther in question. e.g.,
father. The successful matching of a decomposition rule-
hence, the verification of a hypothesis is therefore :1,11
opportunity not only to generate A plausible ries!), eo but
also to establish a subcoutextual 11151e. laying doori if
such a node does not mean merely remetabering what is
now being talked about, but what is more important,
making hypotheses about what is likely to b said next
within the new ei,ntextual framework.

The realization of such a mechanism in an I,IZA
script involves attaching a substructure to decomposition
rules which says, in effect, that if a St) 1110111floi dee.
lion rule matches au input sentence and a suitable sub-
context exists, then control is tratofcrred to a set ur dr-
conqx,,sition and reas,staithly rules appropriate to that
subcontext. The details of inKtrolizat ion are not imp, id ant
here. I will, however, show its effect by exhibiting the
following el onven.atiowil fragment frma the 1/1/('1'(
program:

kieetitae s.,stulthorn.
IS TWIT THE
Maybe
WIIAT IS A BErrEit TttEx
My stotutch hurts.

ME: AB(lrr l'oPlt PAIN: IN cENLItir,
My head Ill.,
v4)1! aria sump, roi.cilitl,HGR.A1, to;.t.srls \\AIN), wit

IIKA1):4101.1) PAIS Yu I;
Maybe,
IOU THINK COIINti 1111,1'

111:.11) PAIN
Certainly.
LET'S TAI.K .11tOPT YOU!: FIT.I.IN.S1111EN Yt)I"I IIINK

of III- ti) ASIlls PAINS

Ne are here in Ih , if ;I cl ;dog. The Ilt s, lit(nee
is an input to the program, the to xt a ill
acted $.)1,111tintternatien.

1 he word bocau.,-e" was the key that tri)..g, red the lad
machine revonse. At the SzIllle t Illle the rta!1(0. Sld.C.1i1(1,
FO to speak, wits eStahlishnl. Notice that the nest .40ic(t
input, i e. , the word "ina)1,C. w as into retol no :ming
"110," 119 is approiate is lit particular context, and that
a cc,nict.u3ity correct in.3, Lime 1,,C tuns 1.1,11, ;e1,

The next input serves to lstal,1141 a loin" xt.

believe the cc iv, rsation f from THI
p.PI1L1 on. i, tiro hoot ee r, that in the 11, It subs e,t, xt the
wool "maybe- whirli .1,1141 HI, I'll lel 1, VII :,11

-1.0" is rlow Neal as 11l1:1111,14 -1% stli thl t
eirium.lances it would Is, mid, rst,..! ;is
certainty.

My secntary watched me work ',it thit pr, gran, axe. a
long 1cri,1 of time. tine da) she :t-keml to be p °totted It

%Minim,. 10 \111111.1r a , 111,11.1. 1914 enmmionital intl. of the 14

r1 J

53
talk with the system. Of course, she knew she was talking
to a machine. it after I watched her type in a few sen-
tences she turned to rue and said "IVould you nand leaving
the loom, please?" I believe this anecdote testifies fo the
success 0th hich the program maintains this illusion of
under-standing. llowever, it does so, as I've already said, at
the price of concealing its (Inn misunderstandings. We :ill
do this now and then, perhaps in the service of jx)liteness
or fur other reasons. But we cannot affonl to elevate this
oc.ssasiiirial tactic to a universal -frategy. Thus, while the
1)0("I'Olf pegrani may be useful as an instnunent for the

of I w"-pers44,11 conversations, and while it is rer-
tailily fun, its aim rout be changed from that of conceal-
ment of ini-maierstanding IO:tti explication.

:knottier dilliculty with the system currently under dis-
mission is that it can do very little other than generate
plausible responses. To be sure, there are facilities for
keeping and testing various is well as other such
relatively primitive devices, but the system can do no

cemput at inn in either the logical or numerical
sense. In onler to !Iasi this and other deficiencies of the
original I,IZ.1 system, I nnle v. urn. program, od -e called
:11 Mach has now replaced its ancestor,

The ELI' /.A differs front the old one in two main respects.
Eiit, it euntaiiis an (allittilew capable of aCCUIIIIlig (Apres
siolis (programs) 44 unlimited complexity and evaluating
(executing) them. It is, of course, also capable of storing
the results of such evaluations fer subsequent retrieval mid
use. Sersonilly. the idea of the script has liven generalinsi sit

hHutt now it IS pip...114e fur this program to contain three
different scripts simultaneously and 10 fetch 101 Scripts
freni am rag art MO1111.01(1 supply atonal 110 :I li -k storage
unit. intreurainunieatimi among coexisting scripts is also
possible.

The m.ij,ir reason for nisliing to have se rerat scripts
availal in the core (iee., hieh speed) 1110111,,ry of the com-
puter derives Irani the arguments about contexts I made
above. The script defines, SI, 110 speak, a global context
n 'thin mhich all of the subsegnient (sourer's:Olen is to he
under-teed, We have se(Cu that it is pecsible for a single
script 1.1 (-111,1i.11 and maintain suboriterts. But what is a
subc.intert from one 11..4)1 of vain. is a major (IA to say

from another pCNI,Irtive.
a (-curie:salon may have ;as its overall .-rana:swork the
health of one of the particirrnts but spend much time
under the headirig of stoniacir disorders and headache
rentrrli(s.

In principle one large, monolithic ELIZA script could
di al n itli this. Ilenrricr, such a script noulll be very tong
:oaf irireincl:i ditlicult to mielifj and maintain. itcsidcs,
long c.p.isme to 0101101NT prOltr 1010111.g Stiroild at least
in-till laaltlo resisv 4 cibrontincs, their isinir aunt
nsrhtc. In the lit 1% 1 :1.1/.1 s:-1. m scripts are iu fact very
iotab lit., subrcutim-,. One script plays the tote of the

ealhel "r ein. pn.grani." i.c , it is the one for calling in
N pLaing sulcirripts. This is the lie ykIli(h, in an

imp .113111 grit ins the cemputer's role in the (sou-
rer. itior.. 'Such a se ipt may, for (t.attlple, play the tole 'I

178 stion of the %CM

Y;

an initial interviewer in a hospital, 1.0., a person elio knows
just enough abOilt the molic;nu the organiza-
tion of the hospital to be able to determine, by means of
appreprinte guest; whew the incoming patient is Iii

tlirceted..1 mon highly specialires1 script then plats I he
role of that pers. a. Jr may call un still further levels of
scripts and each script, except fur the "main" one, e;111
return the issue up one ur aurae levels with information
"explaining" that action.

We Sa W earlier how the word "Imo be" was differctitially
interpreted in what might 1 e called different mien. con-
texts. 'Ile hierarchy of scrip's now miller it si a stun mahlis
much more nearly global emitertual distinctions gossip le.
For example, the word 'Vele" probably means 'misfile tune
to the internist but midi.) tone to the ear sis-vialist. The
ceeinrrenec of that word as a key wont NviStl.11 establish ari
entirely different contextual mode, or call in :1 different
subscript, depending on whether it was Oen! di- it nt :in
internist or an ear spo.ialist script.

Of course, another important ;Armitage of this kind of
subscripting is that '-cripts (sub es- (Mien% i`.4'1 I :k0 per `0!11.

:OAS be %% riftio by speeialists in a very narrow 111-1.1 The
fact that scripts now tend to Ix' fat in-an: 11,11 a
specialist might nein:illy find the time to prodmie one ,..
part .if a larger el operative effort.

The conversations repnrilueod liNilon neve uesicrned by 11
script in the inev E1.IZ.1 system. This script nas de-igned
to illustrate the power ell the evaluator nhich ELIZ.%
has :teems. TI.e key %viol mid other such tischanisros are
not very diftsrent from those deserilxs1)hove. The int
port ;int departure is that. call he 1)r1144 ill et to

stores'.

The

r, evaluated, the results displayedid and

The area of a circle is pi iliac., the rlefias of the nests' 1,1i,
The AI: i5phere limel the Wan:osier ihr spla ; iri
The area f a ,Fisre la 160 aide al . he squiiirc r loosest
The .nf nI,j1,1 is tai,-e radins..f

The talins t.1 a 1,3111 ja 10.
W11,11 is it e arcs .4 the

Tiff; .1.Ssl'N1ItIl IN III %I 14.11,1, IS (11:(1,1; Is I

ENT .11,t1.1.1 IA) tIN?
TIII, .%SsUNIPTI(IN III tT IS %LI, IS .\\ ollt11.41'

la ('nNSIsTKS S11.%1.1, I 01 IIN?
IT'S 1216 4:t.'in

i.

Whai is the Iistincir r ne OM ',All.
IT'S 24)

The taunt if a .10i is Iii.
hat '5 11.0 arcs the data

TM: ASLUNIPTI(IN TINT Plstl IS t'll:c1.1
ENT '-II %II, I 1.oslIN its

Ii's31tlsvn
, i-f is lo

gI,! i OK-re is an
Wh.c, is it.' arta -f the
II'S 1 2.'",

The ride of 3 pl i 10

Whal es rase arta pine

Till :.ISst'yl''Tlit\ Ill IT FL VII: IS sett' 11;1,
I.N I 41111.t. I iii oN) des

I chime In Nikmiher N

Is (..\s1 -.1

100
W1,er, I ,a h11nn1 1 itwalt plate.
1-hat :i till les 'Jilt. shit, 14 the hoard.

31).

I'lettse call that x.
let fix) be x stkaared minus x.

f(x).

li's
11,t'tt I `AY kit n,:ne I

11'Inn an irk .age on,innr. On I filetin I rne:ii),
irk sago It itviel ravine iv}, what is.

1.1101 melt ni n .111:1.11Z11 uu 1111' 1111 S.1119.71,1.

NOKIti Sll. Mir hill NiAViti is A 7itl3dra:.

DiltN'T \t)(?.

,(11 ,nit- :.c?I frigefl titts kat.

91111.

Thank ,..11
(.Nir

The particular example short tt here is one in whiult the
.stent is asked not merely In entertain lint to pc form
soll1(114111 service. The script is one which establishes a
ts.iltext lit ((LAI 111 knits can be interpreted 3s giving
directions about the evaluation of cerlat a expressions. The
tottn1141 of keys %%Inch :lethally lead to decomposition rules
is \Cry 7.111311.111('S are as follows:

I 1111.311

f.

t 1t

Ire.T
('null

T1,3111.,

I. 3 33)
(n art ilte)
I. the in

IA 101' Itf lite form -Is Os a 31I)" will match either "is a"
or -Is ar,".) Ile addition, them are I,/ substitution Isc3 s like
"Tr, ico 2 . *Die eff oct of that particular one is to
111.tinite the st rnbots '2 thercever the word "i{Orf'"
:1111 earl.(in the 1111311 11`0.111 course, the (valuator sitting
1.11111.1 Z.1. all lo Nteal';, recognizes won's like "sQu'r",

.1". I IV. 1111. function of this script is to interpret the
iker's 11 fishes with respect to th evaluation of expression,

rform certain translation functions on these expressions,
and coel nil the I rstlie th input /coittoit system of
1.:1 Jz.% It, (1.:iltiator,

Cele id. I OW 111.7111 kt s sh.At alsete. The sentence
-1,,1 :0,11-y 11.d/fit rt 1el,,lt a, (etii tire sea means" contains
toe- ,t kits. It c..10.1 Ixrlllps undtrstord by the
1)(-11111 but not by tie iirogr,tm tic arc now considering.
fl w.1111 r. IMO rind- rolnd c11ri "

I 1 ell .,Illetion In tie. 11401 %Iii,tl 11,1111 I ,r141. more to

thne the Ill It, 11 hill .1 11 111111 r i,r(1(1..1111 t11.11

011.11 r1:1014. 7I nut 11 the' mpg gt ;,, rn

is for Os pp stet h. t and .mr nil :pis, the rz.-ailtinr in
come Stu f-arnimerk alleAs it. to IND11. nut
pr:at .g.' prosedun-s.

idiom, 111 Nimilrr 11 1I1atii, 11447

-54-

The present script is thsigiusl . r. ;IS

rohreal, lack of understanding and misunderstanding.
Notice, fur example, that when the program is asked to
compute the area of the ball, it doesn't yet know '

is a sphere and that when the diameter of the .. needs
has ;1.'0to be computed the fact that a lull is an object I al o

yet keen establislitsl..1pprlipri:tte (piestians are there
fore asked. But when, later on, the :area of 'hr globe is
required, all the parameters are k1111%{11 :11111 1111 (111t,111./i,

:ire asked. The transcript also makes clear that the progra
now lets memory :old, of coarse, that it can compute.

I can imagine at least two questions that might have
arisen in the mind of the reader in response to the above
material. First, but least important, is %that role the kind of
psychiatric program shown here has in serious p, }-ho-
th Nmy answer to that must be that psychotherapy is
not my field and that I hlYe 110 .11111C111.14111 to pursue :my

therapeutic Implications of this %tork. It is cit'ar that thurt
is considerable psychological material It. IK exploited bete,
material that mit: conctiival4 lead In some therapeutic
developments. There may also be None ue in this kind .1
technique in simulation of the neurotic processes. IX. NI.
Colby, a practicing psychordial3st, do, propIse too use
conversational program; as ps,ychotheraptdic
vis real patients. I FICIlert` the unsolved technic:if problems
in therm:11)liter realm alone are SIO 1./1411-1111111, AS to guaran-

tee the posiroicincrit 14 the realization of soul' goal for
yet a very long time.

Thcsecotid question conceit's itself it ill the in:pileatinuls
44 this work on teaching machines. Hew I feel on
mud) firmer ground. It is toy belief that the kind of pro
grammed teaching that is lilt multiple choice testing
of the student is iy-st done 1100411 lime 11Se of computers.
With the techniques described here, it 14.conies pr,,silde Io
instnicl the student Tii a corner 114 some tit Id ;L11,1 then, the
contextual fremework having been established, I,1 11 :5\e
student interact with the machine in natural language.

The follmNing e.mversatioii, based 'Ti. :1 script it rit ten
l)r. 1.;dt% it, 'rat lor of the Eilin eter of
'ail', makes the reint wet' aril.

11 {1 (111 \,111i 1:11' .S/ 111111 1 N1 11E0\ I/1 iviitt h. 1.1
111.511TO '1 V 1 1 141 010 (II /Cal 1 , t

1411. 1111 1111111 in l 10111. 1111 1 lilkh 11w11 T 1111

141(11111V, 111 41..17%1 41.1.111.\1 11111 1x1 I, II La 7111 11 11! \

N-011' ins. RtItY rorrion)-t s) some's' r x mu,. 114

10. "I II IN 'All 1 (411 17 N111 111111 ill Ft fR1q1,11.11T1i..11
1,1 (1,..-1 I

1111 1 111 1.1 \ I ARK{ 1 ell 1111 11,1:11111 III ISIS'.- ,.)
11 II 11{1 %. '-tAl 1141' \I. ',1 N1 111:0\1:1' I H 111

MITI 1,1-4 I l i l t All \I V: 111 1111.1 11 PM, till I I %1All 11N

1 117 W1 i. 111I 11111 1111.-1 ;1111,1'il!I,
f M11I 4117 '11,1 P-A 11,1 1! -.Ns,. 111,11 N17111., \ '11 r11,,111.1.-

17,111 MI 1/11110 111 -.1 111:40.17114..\ 11, 11 1 11 11:4Ve.%
1171s 111 '14/1 resr op mut, Ill mop, I).,(1 TIN/ 1'1 ((
TIP 1 \11171.711

wtivi ktt,. t,t, I10,1 I1
1E1.11,1 Inn 1 .1

D.4.1.

I ortrinicatio., of 1hr 11 'Si 179

-J5-

i1lI. 'tli'lI II %I1II !.lIlil II I rIi III 11kV lTI '!l(Ii.I

liI LiI' II I; ill J II lii

1(1(11, 111(11 11Th &TII(N1 IiT U1i III iV..IIl.TI,TI/I, III
'lIT'i I l(iI'Ki1 ,ilt1hjlItAFt1TV ITICII ACCLIIACV II t!hI1IlTl\l I,
II)IIl\ I T.Ilt'(I, Ki%'l l.'%i1 .1111. IlIOlIjIM II

jJIlQ(Il' lhi1lrlT 1111(1 II VIII hJLtlJ l!hl 10 LlI0IIl III'-
r 'iij; !Il11FI{' 01 lIII:(IpI I. i0CifFl rii Ill III 1

!IF1l!IIIl, (lLI)II. T(,lllTlI 'IIV III I1IIl(TlCt1l: 1111111 \
Ii: I r'i Ti line k

IlII%'j klTI III llTII1iIilllT(i TI(;TITI1t 11(1111 I\Ii (uhf I III

VIII Jill III I.'J II (1 I.

11111,111 Iii Il'I 1 lii PI(;IlfI(iT:II 11111 .'11 lEllilIli 'liii

iii ill. ill I i I I ii I i, iii Ii ..rsii. s -1 'I
Ill 1111 %'IUiiIilii11I TIil' I 11lIl:i.k,IIIIT1IhIIIIITIII1
Nill II%ill, IIIIIII'IlV IIFJ,iklN Nfl'. Y0III ANIISIN I iI'rNIl'TIJ
1111 lIlT 1. fIll I t;IIT sII;'%I ill i\IT. III Ill I 111111 (I\Ii INI I Ii
%!ll Ill F: lOT NI
II I.,ii Cr1.1 fr Ii II I (rhT irrrIi
I .liI IN'IfIlII III\IL SiuTNI)IfIIIN'IT\I IllII1 NIIr \IIlhI'
i .i1 .lYs I lilTI lIi
J.IIl, II, III

I TI:I1'i NI(\. i' 1 Ii VI 1101 IXI'fIc II 1I.lIII;iTi
%1IT ill ii ifI t;I.iI 11111 111111 (1NIllilil. (IN (II'

i .T(lt1IIrIlI I 1 INrIQIIkNi IN1 1111111 Nil'. 1111k iNI%T'
I i'.i Jr I. 11 I NIl (IIlNIII,.l (IN iON 111IN1 (0111111 I

l'IFI liii. 111(1 III II.NlI I.TNII1I(; IN Jill l'IIIIillIIi1I
I()ITl(Ili Ill l'.i III II 1111111101 TIIIN1
ti rrr'I It - II lr.nI I), .inI

11111 lIT) IIIINI?n 1 III liii IN1IIIIII III1fIlIN1l1 liii
nIlil 11111

1111 I'll III 11111 11111 (III I1L11lN1 1((nlY,'ilI'!N(/) 1111 NIlI
1(11k INTl .I. 11111N1 II1I IiIlr 111 Iii .11 TIll $1111 11111

111111 ((Ni (II l(llT.IiI l'J III I i, 1l\J) 1111! (III 1111111

1 III lI I 11(1 01 J i;' II III l%J liii !II I 11111 Ni

It lid lit -rt.tr . :,e Fr nIl. p.rnr Oil

III Ill
1111.1 111111 111111 111(11 IuI IN I N11'.11iIll(il1'.TI .1IN0l'.l(ii
.li(Il l(1((lllNlI.lnllT(((i I l(N) %l(1(l S''.JI 1INTINIllil L

Nol'. VIII Ill- c;((p\rr lo (ilNilNir 1111111 IIi(iI.II NT tI11IN(i
ill T1(il 1 l'OrIIN (I ..T((VT T'.'(T I (1(11(11(1.)I(TI1IIINT '.1 1111
r(IlI IlIlillIlt I lul,.!M111711 1111111 Nll411IIItk INI1IIN huN

I I'll At 110 51111 1(5(1 1(Il): rhONlJi(%' II IS III LlII ill
\J((tR011/I 1(I) N,'ri Irulik INI1 IN lIIrN(l'I) (1(14 k

111011111 11111 1101 Il III'! 4(NT l'.IIT ((IN1INJI

(11.1 JINII (-TurN 111111 -I11lTIoN liii 11(11 IlbisiNli
ITIIILT 1111 il 111,111 (III 11111 IlINItS TIIIT lii III I I\ lifIII
TIll TIll ITrIN'
I' dl C# flt II

II(uTi;r10 'Ill! (III ill-I Ill Il1III%hIhIl(IIIlIIII 11T.i (lilt

NIr('I 1111(1,, ((II IN NI'.' 1I'Iik IIIN1 ('I 'IN (ITIN
11111 1,-I Nnl'. Till ININI1 11111 Tiilhl((1.1,11,1114

I !.vc I 11(15(11 (Ii SkIIV ttii (IlSC'I'STIiTI Ill 1111 (tII(CIlIl(T III

((lit IiililiIlri7 11111 IT1N(' (Tilt 11iit (tifiiIlIi N'.(ihil dl1lt
if it hr ! lIllTI 11111111 111111 rIe(IghIitiruu ifirii

iii (lIiIilIT1 1 1 IhI(rIltiIitl to IITT(tIITt5:(IITIR. I lii I iIt(I

VI 11111 S 1 II '1 (Ii 1)1(1 1(11 lIlt r. i.\ II till ITIf)! Ill I lIst 1 IlTilti I

II Ii.. ttt I:Tt ss 1k rig!, isedo foci SIC Tirt (111(11 I-

I?IP. '.11(11 tie' trn lIt ti I1tng I') III 111

11011 1(1 III TI ilsalt (tlh(1tilflTIn 1111 INlihil iii flhT3!\' VI'I-lIt 1'
It (ill (III,! or '-i IT ttii ,ti I(I11 III I '1(1 liv iu ii

1011 ul, Ill (11111 I 15:IIIllFi liiI1111V1S1 tIi41Si JI0tif\ till
fI'- liSril Iii:ii Iii IrgrIiTe til:Il Ir.hIIIrrli tlTf JI'.11Il45
III 'grI?Iht Ii *Iiii I(tIl 111' 11111 Il1I4rtlilli iSlE)? 11111111(1

11 iI'

111:111 1 IIl-T ill ((lI 3t1(TIIJITi tO IlIrtI 1(1111.1 IIIri.

tI!'l If II tilIl IIIliliLto tilT JiTIlLIJi. ii'T'lriII 11111 LIlt I

utjurin iiilijurJ I)I(1 lIILISJI!lr:)liu LTILI1IriIll:II (III?.
ILITI Ii 111(111 1(1111 hut JrlS'(rIilI1l. riLhuiI rujus' LII? to iu
(11111 turrI'Ilt hOC (if It IIFI..

I hu 'II IrIigr:IIui It i:tIir:III 01 I';1IliIiI1 of JurfIVCIIIJ:ti
IlLt.i 111111 ii? 11111 iii :1 lIlI Ihu:lIIgIIlI 111 ti:It lIL-hrI:lri Ii

tli' ,:iiz. 11:111 11111 jrhr ('IITLI'Il-i:II 1111 lIiII1:LI iii 1111111,

\ltJ(tL t Ill tiI:Lt ll(ulvlr,:hJIuJI till IrlIgrill hIII III LTIfIr
(ti:it 1 III IllS 11 shilIru nIl LII llhljNI 111(1 lIt IIhIIR I

1111., IIIIJIlTlb(liii IrIghll) ruIi'pl(II II, ilIfIhIli:ll 1111 iII' TI

tilil (Li 1n51IJ:ItilIg 111111 11:111 IhL(' fLit hIlL? ft 151

171(1 III IIi'lIt lull I III t1hlLri 11111! lhII5t liii? Ir:ihi 01 :111

JI 511111(1 of (al-hi, II ((l'tiI(IV. "lJi i ii llrlIg0(lll II hull
III ('St:ItuIT..hIiJLg 1111)1 l'IiItLITI.ItrIiI.1(iliriIiulI.hI1ILT

:LII(1 lILvIlkirIg til(TlI nIl('I tIIIJ1V(lt (liii If ifs :11 hIll:. 11(111

IIItS tI) IttlIhItITh! (1TIl!IIIIIIItI(g\ for IorI.T:Ihi,i,rg II l':!I'IIIIIi rt
r(t;It 111115 11111 (1.111 rItM?JI(hI5 IIlIl(IItf r(iIhiIIrIs.

Ir(lTr(INv's Irl)gr:IriI tl(iI)I'Nl Ii IIi,SIhlII (If 'IIIllIg no
4111(41 !gI'iIr:l 1111711 Irl(II1IIIIIS (If it k)IIII 111:11 III II hIl('Lii
gill-IT III high 5ihli(l(I IIg(i(((\l 1r1 li'I'14 1 IlI'.'lI:IIll'TIi
11(1? SIll IlIffIJIhit (I Ill III '(till?. Ils (11111 tl'I'. in
It11Ili(iTJil 1)11 ITLIllI (-NI II, I11(' Jl:lI(lrt tl{IILIiIg('Iu?'
ITitli (If Ill 1iglI (ru I td III? hi(11I1 JiI(1(1 -41 lIt iTTILIL!t II

Illl(TLS rIi('Ir u1liI:ItiuIlls 111:11 ITlI Ill: III (I:I!II:ltIII III
Ill (InItuit r(-IlII. hIIIIiIIf!1r 'LihI1hI (If Iii.

r(IJ.lrlll IfS '.0111 tIl ll((Igh(i)n :luILiuigillti('S lilt t(l(iVI
III(liIIf?IIII,IIIIIIII:IhtrliFIf_VIlIl::litSILI1IIlllIIJIIfIrhriltil1L
(Ill IIITIII'IIIiII 1 lIT' (-isilltZ IlIIIIITIS.

liii I(I1k If (IliJii3TI 5 TIlIlilliE llItu'.'I(II IrlIlIrt (,IOl}IiI'hi
Il 11:11:11 slrIIe1(;rc cIEItlii (If i4Ir(liIIg '(lllIiiiI(' 1111'

tLl(I)riu s. IIN SVtI ill ((lUll11 (IF l\.IIITIITI (1((J(1(liii till
111(711! IIIrrk for' ti tIlt IlIItITLCC 1(11111 lIlIrks for

1110.111 'IS IIihI(iIl(lt 11% NI 11111 till 5:ITIII' II (Iris
IllS ittITIg in the l'(IItIJItt 111,1? I1iOt(t hILl IIOTk flIt liii
(((TI JlIIhllh((lS ItlIlL III ITIII StIlt T(IT(ttt.' 111(111

IIu'al)l(_ to."
1-nih III tlll cI1IITII1)t(t p.11)-s r('kh(1111,1 1511111 II 1r(I ItS

Ill nt uk (II '.1111 (I 11111'. Illilli if tilt 011.1 tui ii I1TIII1 I 'I Ill I

I (lb 11111 II. III if 11tI lii III It WIt I It 1' III' I.

I(lIIIl i'l,l(

Ill '.1 I

I It puin (I J . (i 1111 1 (11 1ll II -rIll lJ iI I

nil I' 'I '11(11 III 11 lI Ni I U. I' i! Ti elI

I ITT (I 'It int 11'.

2 (-1111 P11551 III IIII 1 1,1 lIlt nIlIl 1111(11 -1 (!Il' Ill
,if I. il n'.., 1.' Ilnl it III 1' II Sill' I, Ii'

I'tulhIlI II'S, 'IlIn (d011 l 5mb,. fn lOt) i1 '
if TInlil S II ITIil If, 1111,1 ,'1 h'.'l I 1l,lI Ill till

s

.1 (l (1111 Ni IT r'rr.l Tb 1111115 I'll II

tnT 1 I I-1'. I'll?, IIil II

I 111(1111 II "It 0 I' I'
(1111(11 T' I1IIITTC

11,11 i' t IT'.? III II Ii.-. 'III I II .t 'Ii

I 'l!ill'TlIIT 'IInIl.I(' I l'.tf lilT_I4 11rim I IlIrt' f '.i. !

It. '.'li 'IT ' U-I,,r I I

(I ifIltilPIl II t -IT'(I Iif II 11111 ' I, lb f I.
tIiI'. f 1,11?,? t't 15(1 (1oIl!ll l'l II Id lt,i TIll I
ll,lltllIl((n,,i II (III '.t J'(I3', I'

I KIt I ,r(IItl,l((ll(.PiuiSI(" ut Ill'. (%t li1tIl,tl ill \I(lllt,s UIiII') I'.

I) ',

APPENDIX C

TRAC Functions in GLURP

APPENDIX C

TRAC FUNCTIONS IN CLURP

#(AD:D1:D2:0
Adds decimal numeric digits D1 to digits D2. A negative number is indicated
by a leading minus sign AS in "-3". No decimal points may be included in
the number. If the arithmetic capacity of the machine is exceeded, the value
of the string is Z. Ncrmally, the value of the string is D1 plus D2. Does
not change forts storage.

#(AN:N:D:Z) ADD AND STORE
This function is similar to AD, except that the first argument is a string
name instead of a number. The contents of N are incremented by D. If the
arithmetic capacity of the machine is exceeded, the value of the string is
Z and forms storage remains unchanged. Ncrmally, the value of the string is
the contents of N plus D, and this value replaces the previous contents of
N.

0(BA:Nl:N2) BOOLEAN AND
This function performs a Bool4an "and" func:ion of the Boolean string N2
and the Boolean contents of string Nl. The results are left in N1 and the
function has no value. For every position that is a I both in N1 and the
contents of N2, a 1 is placed in that position of NI.

0(BC:N) BOOLEAN COMPLEMENT
This function reverses the sense of each position in Boolean string contained
in N. Every 1 is changed to 0, every 0 is changed to 1. The result is
stored in N. The function has no replacement value. In our version of BC,
the number of bits is always a multiple of 8.

0(BE:N1:N2) BOOLEAN EXCLUSIVE OR
Performs a Boolean "exclusive or" function with the contents of N1 and
Boolean string N2. Every position that is a 1 in one string and a 0 in
the other is set to 1 in NI. The results are stored in N1 and the function
has no replacement value.

#(BO:Nl:N2) BOOLEAN OR

Performs Boolean "or" function with the contents of N1 and the Boolean
string N2. Whenever a position has a) in either string, or both strings,
a 1 is put in that position in string NI. The function has no replacement
value.

0(CB:N) COUNT BINARY BITS
The value is the number of 1'3 in Boolean string named N. Forms storage is
unchanged.

0(CC:N:Z) CALL CHARACTER
The .clue is the character unCer the foam pointer. Every string has a

counter that shows what part cf a string is to be considered the current
beginning. In tlqs way the p,ogrammer can use pieces of a string, letting
the machine keep track of vhere he left off. This is one of the functions

-57-

-58-

that uses tho string in this fashion. If, say, we had string N with contents

abcdefp,hijkl

the first use of the CC function would find the form pointer printing at "a".
The value of the function, then, would be net as "a" and the form pointer
moved up to position "b". The next use of the CC instruction would produce
the value of "b", unless some other form-pointer using function was used in
between, of course. The CC function skips over segment gaps (see SS function).
If, in the example, the forms pointer were pointing to "l", the next use of
CC would produce the value "1", but the next use of the function would pro-
duce the value Z.

#(CE:Nl:N2:Z:N3) COMPARE FOR EQUALITIES
In GLURP strings take on severs/ forms. One of these is the word list, N,
consists of a series of words separated by blanks. Each word in the string
is considered an item of the list as is every comma.
This function compares word list NI abainat word list N2. If all the words
on NI are on N2, the value of the function is Z and N3 remains unchanged in
form storage. If all the items on N1 are not on N2, then those items which
are on both NI and N2 are put in list N3. Any previous definition of N3
is deleted. The function normally has no replacement value.

0(CI:NI:N2:Z:N3) COMPARE FOR INEQUALITIES
Similar to CE, except that those items which are on list Ni but not on list
N2 are put ea list Nl. The function normally has no replacement value.

P(CK) CALL KEYBOARD
The value of the function in tie last student response to s KEYBOARD state-
ment. Fotts storage remains unchanged.

0(CLIN:Xl:X2' CALL SIRING
The value of this function is created by bringing in stting N and filling in
the segments gaps of value 1 with Xl, segment gaps 2 with X2, etc. (see SS
function.) Forms storage remains unchanged. In practice, this function is
omitted and a "call" i.3 accomplished by using a string name in the function
position instead of a functio tame

0(N:Xl:X2

The colons for segment gaps must be present even if null arguments are pre-
sented.

i(CN:N:D:Z) CALL N CHARACTERS
This is similar to CC, except that its value is the next D characters of
string N. If D characters do not remain on the caring, the value is Z and
the form is unchanged. The forms pointer normally is moved to the letter
after the D specified characters of the string.

-59-

#(CO:N1:N2:N3:N4) CONCATENATE
This function creates a new string Ni which consists of the three string N2,
N3, N4 put one next to the other. If one or more atguments are omitted, only
those strings specified are used to create the new string, in the order
specified. Any previous definition of Ni is deleted. The function has no
replacement value. Strings N2, N3, and N4 are left unchanged.

#(CP:D1:D2:Z1:Z2:Z3) APITHMETIC COMPARE
Compares digits DI with D2. If DI is less than C2, the value of the function
is Z1; if DI is the dame as D2, the value of the function is Z7.; if DI is
greater than D2, the value is Z3. Forms storage is left unchanged. A null
value is treated as zero.

#(CR:N) CALL RESTORE
Restores the tom pointer back to the beginning of a string after it has
been moved up by CC, CS, PT, etc. The function has no replacement value.

0(CS:N:Z) CALL SEGMENT
The value of this function is the string from the current position of the
form pointer to the next segment gap of string N. The value is the rest of
the string is no segment gaps remain. If the string is empty, the value is
Z. The form pointer is moved to the first character following the segment
gap.

0(DC:F1LE:ATThIBUTEtNIZ) DECODE BINARY
The binary string named N is decoded according to the same table that would
be used for ATTRIBUTE !n FILE. Entries corresponding to the different bits
are separated by commas. This string is the value of the function. On).y

256 characters ace allowed each time DC is used. It there are no more bits

to decode, or the decode table is not found, the value is Z. Issuing the
same function again causes decoding to continue where it left off.

0(DD:NItN2:...) DELEFL DEFINITION
Deletes strings NI, N2, etc. The function has no replacement value.

l(DE:F1LE:ATTEIBUTE:N:Z) DECODE ITEM

The function is replaced by the decoded value of the contents of N. The

decoding takes place as if the contents of N were the value of the attri-
bute. If the decoding cannot take place, the value of. the function is Z.
Forms storage is unchanged.

0(DF'FILE:RECORD:ATTRI6DIE:N:Z) IALETE FROM DISC WITH FETCH
Deletes the data item specifiej by FILE, RECORD, ATTRIBUTE, from the disc,
at the same time inserting it in string V. If. N is not specified, the
value of the function is the deleted data; otherwide the function has no
replacement value. If the data cannot be found, the valve of the ftw.ction
is Z.

tI(DI:N900(2.) DELETE ITEMS FROM LIST

In the list named N, items Xl, X2, et'.. are deleted. The function has no

replacement value.

-60-

DIVIDE AND STORE
The contents of N are divided by D, in the arithmetic capacity of the machine
is exceeded, the value of the string is Z and forms storage is unchanged.
Normally, the value of the string is the contents of N divided by D rounded
down to the next lower whole number, and this value replaces the previous con-
tents of N.

#(DS:N:X) DEFINE STRING
Defines in forms storage a string named N with contents X. Function Lac no
replacement value.

li(DT:FILE:RECORD:ATTRIBUTE::Z) DELETE FROM DISC
Deletes specified data item from disc. If record cannot be found or is not
to be deleted because of its protection key, the value of the function is Z.
Otherwise, the function has no replacement value. Forms storage is un-
changed.

0(DV:D1:D2:Z) DIVIDE
The value of the function is the quotient of DI and D2, to the next lower
integer. If the arithmetic capacity of the machine is exceeded, the value
of the string is Z. Forms storage is unchunged.

d(EQ:Xl:X2:7.1:22) CHARACTER EQUALITY TEST
Compares string X1 with string X2. if they are equal, the vales of the
function is 21, otherwise the value is Z2. Forms storage is unchanged.

0(FC:FILE:RECORD:ATTRIBUTE:N:Z) FETCH ONLY
Gets the specified data item from the disc. If I! is specified, the data is
put in string N and the function has no replacement value. If N is not
specified, the function value is the data item; if thG data item cannot be
found, the value of the function is Z. The item is not decoded.

A(FA:FILE:RECORD:ATTRIBUTE:N:2) FETCH RECORD WITH DECODING
Gets the specified data item from the disc. If N is specified, the dat., is
put in string N and the function has no replacement value. If N is not
specified, the function value is the data item; if the data Iteh cannot be
found, the valne of the function is Z. Item is decoded according to the
appropriate table. If no decidini, is specified, the literal value is re-
turned.

,(GO:STEPNO) GOTO

Transfers script control to s'catement STEPNO. STEPNO must be in the format
DDD.DD where all the D's are digits. This is different from the Z forwt,
in that there is no leading 04. The function has no replacement value and
forms storage is untouched. Control is transferred immediately as soon as
this function is recognized; any remaining functions in the current state-
rent are ignored.

O(ID:FILE:RECORD;ATTRIBUTE:Xa) INSERT ON DISC

Inserts data item X on the disc with the specified labels. If toe label is
already represented on the Cat, the item is not inserted and the value of
the function is Z; otherwise the function has no replacement value. Forms

storage is unchanged.

-61-

0(IN:N:X:Z) INITIAL
Starting from the form pointer, the form named N is searched for the first
location where X matches the itring. The value of the function is the string
from the pointer up to the character just before the matching string section.
It a match is not found, the value is Z. The form pointer is moved to the
character following the matching substring, or is not moved if there ie no
match.

0(KS:D) KEYBOARD SEGMENT
The value of this function is the Dth segment of the last user response as
interpreted by the last used DE1/4.:OMP statement. The keyboard buffer and form
storage are unchanged.

0(LC) LOG CRT MESSAGES
Causes messages to the console to be logged on the log tape. This is rot
the normal mode. There is no replacement value and forms storage is un-
changed.

0(LG:X) LOG MESSAGE
The string X is written to the logtape. There is no replacement value and
forms storage is unchanged.

0(L1:X:Z) LOGIN
The session is initialized for inquirer X. If X is an unacceptable iden-
tification, the value is Z. Forms storage contains NICK, the inquirer's
nickname and PASSWORD, the inquirer's password. Normally there is no re-
placement value.

0(LK:N: LOAD KEYBOARD
The contents of the string N is placed in the keyboard buffer, and can then
be used for DECOMP statements. Forms storage is unchanged. The function
has no replacement value.

0(LN:X) LIST NAMES
The value is a list of ail the names of forms in foams storage separated by
the string X. Forms storage hi unchanged.

0(LO) LOGOUT

The session is terminated for the inquirer in question. All forms are de-
leted. There is no replacement value.

0(ML:D1:D2:Z) MULTIPLY
Multiplies decimal digits Dl and D2. ho decimal points are allowed. Nor-

mally the value is the product of Dl and D2. If the arithmetic capacity of
the mar.hine is exceeded, the value is Z. Forms storage is unchanged.

OCAN:N:D:Z) MCITIPLY AND STORE
This function is similar to ML, except that the first argument is a string
name instead of a number. The contents of N are twit:Wed by D. If the

arithmetic capacity of the machine is exceeded, the value of tne string is
Z and forms storage rerains unchanged. Nurrally, the value of the string
is the contents of N tires D, and this value replaces the previous contents
of N.

-62-

#(NB:N:X) NEW BOTTOM LIST
Puts item X on the bottom of the list named N. The function has no replace-
ment value.

#(NC) DO NOT LOG CRT MESSAGES
Turns off the logging of CRT messages to the log tape. This is the normal
mode. There is no replacement value and forms storage in unchanged.

0(NT:N:X) NEW TOP LIST
Puts item X on the top of the list named N. If the form pointer has been
advanced by the use of CC, CS, 04, or PT, only tt,e remaining portion of the
list will be used with X at the top. The function has no replacement value.

D(PC :X) PRINT CONTINUOUS
The string X in displayed at the next available epace. There is no replace-
ment valve, and forms storage is unchanged.

#(PF:N) PRINT FORM
Prints the contents of the string named N, including indications of any
segment gapo. The function has no replacement value and forms storage re-
mains unchanged.

#(PL:W:X) PRINT LIST
Prints each word in word list W separated by the character(s) X. The
function has no replacement value and forms storage is unchanged.

0(PS:X) PRINT STRING
Prints string X on the next available line. The function has no replacement
value and forms storage remains unchanged.

#(PT:N:2) POP TOP LIST
The value of the function is the next item from the top of word list N. If

no words remain, the value is Z. The form pointer is advanced to the next
item .n the list. Multiple spaces are treated as one space.

O(MD :FILE:RECORD:ATTRIBUTE:X:2) REPLACE ON DISC
Replaces the data item specified by data X. If the existing item cannot be
found, no replacement takes place and the value of the function is Z.
Otherwise, the function has no replacement value. Forms storage remains
unchanged.

#(kli:FILE:RECORD:Z) READ HOME PRIORITY
See HASH /DASH write-up for description and use of Home Priorities. runcticn
has replacement value of home priority of file and record stated or, if
record not found, it has a value of Z. Forms storage is unchanged.

#(RT:SltFNO) RESET STEP
Sets the script branch control at STEPNO, but does not transfer control
until the rest of the current statement is analyzed. STUN() must be in the
format DDD.DD where all the D's are digits. There is no leading A as there
is in the Z format.

C-6

-63-

#(SC) SCRIPT CURRENT
The script name and step number are displayed on the screen. Forms storage
is unchanged, and there is no replacement value.

#(SD:X) SELECTIVE DELETE
Deletes from form storage all strings whose names begin with the characters
X. The function has no replacement value.

#(SH:FILE:RECORD:D:Z) STORE HOME PRIORITY
See HASM/DASM write-up for description and use of home priorities. Function
stores D as home priority in stated file and record. Has no replacement
value unless tie file or record is not found, in which case the value is Z.

#(SN:N:D:a) SUBTRACT AND STORE
Subtracts D from the contents of string N and replaces the previous con-
tents of N with this sum. The value of the function ts the new contents of
N. if the arithmetic capacity of the machine Is exceeded, the value of the
function is 2 and forms storage is unchanged.

#(SR:FILE:RECORD:ATTRIBUTE:X:Z) STORE RECORD ON DISC
Stores data X on disc with specified label. If label already exists on disc,
the old one is deleted and the new item put on instead. The function has
no replacement value and forms storage is unchanged.

0(SS:N:Xl:X2:...) SEGMENT STRING
The string named N is scanned from left to right with respect to string Xl.
If a substring is found matching Xl, that substring is removed from string
N and markld with a segment marker of value 1. The marker is called a "seg-
ment gap". The rest of the string N is scanned with respect to XI to create
any additional segment gaps. The parts of the string not taken by segment
gaps are now scanned with respect to X2, and the matching substrirgs, if
any are marked as segment gaps with value ", etc. The untouched portions
of the resulting strings are called "segments".

0(SU:D1:D2:2) SUBTRACT
The value of the function is the result of subtracting the number D2 from
Dl. If the result exceeds the arithmetic capacity of the machine, the
value of the function is Z. Forms storage remains unchanged.

0(TB:N:0:21:22) TEST BINARY BIT
Tests the Dth binary bit in the Boolean string named N. If that bit is
"on", or a I, the value is Z1; otherwise it is Z2.

0(IF:N:D1:D2:D3:...) TURN OFF BINARY BIT
Forces the D1, D2, D3... positions of Boolean string named N to be 0. The

function has no replacement value.

ft(TO:N:D1:D2!D3...) TURN ON BINARY BIT

Forces the DI, V2, D3... positions of Boolean string named N to be 1. The

function has no replacement value.

1,1:12.0

-64-

0(XQ:SCRIPTNAME:STEPNO) EXECUTE
Sends control to script SCRIPTNAME, statement STEPNO. If STEPNO is not de-
signated control goes to the first statement of that script. Control is
transferred immediately, without further analysis of the current statement.
Forms storage is left unchanged. If the step or script does not exist,
control is passed to the script on top of the LIN'C list.

#(YZ) TRACE DECOMP STATEMENTS
Causes each match attempted in the evaluat4on of a DECOMP statement to be
logged on the LOG tape. This is to be used only in desperation, as it is
extremely wordy.

#(ZZ) TURN OFF DECOMP TRACE
Turps off "YZ" or "panic" mode.

APPENDIX D

Permanent Forms

APPENDIX D

PERMANENT FORMS

#(AORAN:X) A OR AN
The value of the function is "AN X" if the first character of X is a, e,
o, or u. Otherwise the value is "A X".

Any previous definitiun of A*** is deleted from forms storage. The form is
as follcws: (@1, @2, @3 indicate segment gaps.)

0(16:A***:@1)
#(DS:A***0(CC:A***))
P(SS:A***:A:E:I:O:U)
P(EQ:#(A***)#(DD:A***)::AN @1:a @1)

C(COUNT:N)
The value is the number of characters in the string N.

Previous definitions of A*** and B*** are deleted from forms storage. The
form pointer to N is restored to the beginning, althougn the count is from
the pointer to the end of the form. The form is as follows:

0(LOOP:A***:100:(0(***:0(CN:@1:10:0(LOUP:B***:10:(
0(CC:@1:0(CR:@1)0(COUNT*4*))))))))))

#(COUNT***)

0(AD:0(A***)00(B***))0(PD:A***:8***)

COUNT CHARACTERS

f(END1NS:X1 :X'nX3) END :N S
If the last character of tne string X1 is the letter S, the value is X2,
otherwise the value is X3. Any previous definition of A*** is deleted from
forms storage. The form is as follow:

0(DS:A***@1)
0(***:0(CS:At**))
0(001(CN:A***:-.1):S:0203/i(DD:A.")

0(LOOP:0:D:X) LOOP THROUGH
'[he string X is executed D times. Ttre counter is kept In 0 in forrs Ator-

age. If X causes a transfer of control, the value of N will be t)'e number
of times the loop was completed.

The form is as follows:

ii(DS01:0)
l(LOOP***:0(AD02:1):(@3))

LOOP***

f(CP:O(AN01:1)02:030(L0010101*:01:@2:(@3))))

-65-

brj

-66-

0(NUMBER:X:STEPN01:S7;EPN02) NUMBER
If X is all digits, control transfers to STEPNO1, otherwise control trans-
fers to STEPNO2. Any previous definition of A*** is deleted from forms
storage. The form is as follows:

0(DS:A***01)
0(SS:A***:0:1:2:3:4:5:6:7:8:9)
0(EQ:0(A***)0(DD:A***)::(

0(6002)):(
MO:03)))

0(PB:N:D1:D2) PRINT BINARY
The string N is displayed as a bit string on the screen, starting at bit
01, for D2 bits. Forms storage is unchanged, and there is no replacement
value. If D1 is omitted, it is assumed to be 1. If D2 is omitted, it is

assumed to be 255. !f. D2 exceeds 255 it is assumed to be 255. Any prev-
ious definition of A*** is deleted from forms storage. The form is as
follows:

D(DS A***:1(EQ:@2::0:(#(SU02:1)))
0(PS:0(LOOP***:A***:

D(CP:03:256:(0(Efl:@3::25603)):256:@3):
(0(TB01100.***):1:0))))

0(DD:A***)

:MSS) DISPLAY SLIDE
Lie named X is displayed on the slide screen. If the slide is un-

available, a description eppesrs on the CRT. If the wrong tray is youoted,
a message to change it is sent. The slide is displayed for h minutes mid
SS seconds. IC the last argument is blank, the slide is displayed for ten
seconds. If there is a concurrent message, it is displayed at the same
tima se the slide. Forms storage is unchanged, and there is no eplacerent

value.

Any previous definitions of A***, B***, T***, 1D * ** are deleted.
FILE is expected to contain the tame of the current file. When
the command is finished, TRAY1*** has the name of the tray mounted
on projector 1, and TRAY2*** has the name of the tray mounted on
projector 2. PROJ** has the number of the currently used pro-
jector. PR1 * ** has a count of recent usage of projector 1 and
PR2*** has a count of recent usage of projector 2. The form is es

follows:

SC1*

l(DS:ID***01)0,DS:T***02)
i(SC1*)0(DD:T***:1D00*:A***:B***)

l(EQ:l(FO:f(FILE):#(1D***):VLBL):1:(0(SC2*)):(
l(TB:I0ERR:11::(

f(PS:l(F0:1(FILE):#(ID***):DSCRPIN))))))

SC2*

SC3*

MOUNT

-67-

#(EQ.#(1RAY1**k):#(FO:#(FILE):((ID***):TRY:A***)#(A***):(
(AN:PR1***:1)#(DS:PROJ***:1)#(SC3*)):(
WQ:#(TRAY2***):1l(A***):(

#(AN:PP2***:1)#(DS:PROJ***:2)#(SC3*)):(fi(MOUNT)))))

#(DD:N*A*)#(PS:\SO#(PROJ***)/
#(EQ:0(T***)::010:(1/T***)))/
#(1:0:4(FILE):0(ID***):PSTNS9::)////*[
#(FO:#(FILE):#,ID***):CNCRRNTM)<

>ISOO(PROJ***)//////*4)
CPS:PRESS THE RUN BUTTON NOW.)

#(PS: MOUNT SLIDE TRAV #(A***) ON PROJECTOR
0(CP:#(PR1***):0(PR2***):(0(0S:11***:1)):(

C(DS:Bx**:1)):(#(DS:9 ***:2))) #(B***))
0(DS:PRI***:O) 0(DS:PR2***:0)0(DS:PR#(R ***)***:1)

KOS:TRAWHic*)*A*:#(A***))0(SC1*)

#(TAKEN:D:STEPNOI:STEPN02) TAKEN THE SCRIPT
If the inquirer has taken the script aJmbered 0, control transfers to
STEPN01, otherwise control transfers to S1EPN02.

If STEPNO2 is omitted, the next step is taken. Any previous definition of
A*** is deleted from forme storage. The form is as follows:

0(F0:0(NICK):1AKFF:ETAKeNtA***:(0(DD:A***)))
#(80:A***:STAKEN)
0(TB:Aa**:(#1:(0(OD:A***)0(G002)):(

((DD:A * * *)

0(EQ:03:::(11(GO:03)))))

0(WD:Na) WORD
The value of the functiot is the next wotd list N. If no word remains, the
value is Z. The form pointe: fa advanctd to the next item on the list. Word

delimiters include ? , ; : 1 and space.

Any previous definition of A*** is deleted from forms storage.
The form is as follows:

f(DS:A***A(CS:GI:(ti(C002))))
0(S3:A***:,: :,:;:?:(:):1)

0(DS:A***:00(CS:A**0))
WIN:02.0(A"*))
0(CC:01)0(A.**)0(DD:A*401)

APPENDIX E

MINORCA - Paper 02

Dorothy Swithenbank
Arnold Smith

MINORCA PAYER 1/2

Introduction

This paper cote altis (preliminary) specifications for the MINORCA

language. The specifications for the language have been drawn up with the

following goals in mind. Some of the goals appear to be almost contra-

dictory, and none of them is precisely defined, so the language comes at

best only approximately close to meeting them. Comments are invited as

to where the language falls considerably short of meeting the goals, Jr

indeed, as to how the goals themselves sculd be reformulated.

(1) The language should be stAficiaatly powerful to handle easily

the requirements of 1SVD, i.e., scripts written in MIN3RCA should be able

tc contro:. the entire system for student-ma.:hine interaction. In par-

ticular, MINORCA should contain many if not most of the cpabilitie', of

ELIZA and TRAC.

(2) The language should be relatively simple to use by people vhose

main inte..!st is not rrogramming. Scripte should be easy to write and

easy to read. Simple procedures, in particular, should be simple to spec- ,

ify.

(3) Relationships among scripts should be e7isy to define and easy to

visualize. Flaw of control and selected infomation should be easily passed

from one script to another.

(4) Irplementatiun of a processor for the language should be a tract-

able job. Script execution should be efficient enough so that response

time from the terminal is not unreasonable.

General

The basic unit of stricture in MINORCA is the script. One script may

control an entire conversation, or several scripts may share control. Com-

munication among scripts is kept to a somet,hat restricted and formal level,

with the idea that different scripts airy well be written by different people,

normally dealing with ditferunt area of a problem. Within a script there

are no restrictions on such things as branching of control and symbol ref-

erencing.

-69-

?3

-70-

Levels

Each script is assigned a level. The level indicates where the script

fits into the hierarchy if the ,system. Levels are numbered sequentially

from zero (although they are usually representeA symbolically -- see below).

Level zero is highest -- there will be probably only one script Lt

level zero which will be a control script. A script can transfer control

directly only to a script whose level is the same as, or lower than, it-

own (i.e. has a level number equal to, or greater than, its own). There

are two indirect ways of getting back up the line which will be described

below.

Symbole

Many things in a script -- strings, lists, statement numbers, data --

will be referred to by name, rather than explicitly. These names will all

have the same general form, and will be referred to in this description as

stringnamee or sometimes 86 symbols. A stringnate (symbol) may consist of

any number of any character except (), and blank, as long as there is at

least one letter. Furthermore, the following words are forbidden as

stringnames: IF, IS, OF, OR, AND, THEN, EQUALS.

Comments

A scriptwriter may insert a comment after the end of any statement,

either on the same lino is the statement or on a new line, by preceding,

the comment with a dollar sign. Each new line of commentary must begin

with a new dollar sign. Otherwise, there are no restrictions on the text

of the comment.

SPECIFICATION STATEMENTS

Script name. Each script is given a nine, which must be unique within the

system. Its length is limited to 30 characters, which may include anything

but slash or dollar sign. It is specified in the first line of the script.

The format is

SCRIPT name
e.g. SCRIPT ROCKING HORSE 2

End of script. The last line of a script must have the following format

END SCRIPT

74

-71-

Level specification. The second line of a script must specify the level

of the script. Its format is

LEVEL number
or LEVEL stringname

e.g. LEVEL 4
LEVEL SUBCATEGORY

The second format (symbolic) will normally be used. Only authorized level

names should be used, because the value of the stringname must be defined in

the level zero control script. Symbo,ic levels are primarily a convenience

whilt the system is being built, so that intermediate levels may be easily

added without changing all scripts. Norrally, the values assigned to sym-

bolic level names will not change, and the level of a script will be deter-

mined by what type of script it is.

Statement Names, Entry Points Back-Up Points, Punt Points

For convenience, statements may be labeled. Any stringname may label

a statement. In the past scripts were envisioned as a collection of frames.

Each frame was labeled

*xxx.xx

where x WAS any digit. All statements within frames were labeled

xxx.xx

Any scriptwriter, who wishes to use this means of organizirg a script, may

use statement labels of the form

*xxx.xx or xxx.xx

All statement labels must begin it column one. Other than statement labels

no other character may appear until column six on a punched card. The only

exception to the above rule is that a hyphen must appear in column one to

indicate the cotinuation of a statement. Each statement must begin on a

new line.

One option for the frame statement, which should be used sparingly, en-

ables an outside script to enter this script at this frame (normally other

scripts branch to the beginning of the script). This defines an external

label which is treated by the system as if it were another script name. The

name must therefore conlorm to the requirements for a script name, including

the requirement that it be unique within the system. Ordinary statement

labels must be unique only within the script, The format for the external

13

-72-

label ie

ENTRY POINI name

where "name" 16 defined as the external label.

Another option specifies a convenient point that a student may back

up to if confused. The format for this statement is

BACKUP POINT

Each time a 'ACKUP POINT statement is encountered it is stored on an internal

list until ten locations are on the list. When the eleventh location is

stored, the first will automatically be removed. Should the student wish

to go back he would be returned to the last backup point encountered. If

he wished to go back further he would gy co the second la.st backup point

encountered. Should a acriptwriter not specify logical backup points an in-

ternal system routine will attempt to find a place to resume the dialogue.

At times a student's response may not have been anticipated by the

scriptwriter. The scriptwriter may wish to insert routines at various

script levels to ha idle these problems. The !eginning of one of these rou-

tines should be indicated by a statement of the format

PUNT POINT

When the normal methods of responding to student input have been exhausted

and the machine is instructed to

PUNT

it will see if there is a PUNT POINT in its current script, of, for example,

level 2. If there is no PUNT POINT to that level 2 scent, it would see

if there be a PUNT POINT in the level one script from which it came. If

there is not, the machine would return control to the generalized punt

routine in level zero.

PUNT POINT's, ENTRY FOINT's, and BACKUP POIrn's may have statement

labels. One point may also be, for example, both a backup point and an

entry polit. Since ENTRY POINT and BACKUP POINT are separate statements,

they should be on consecutive, separate lines. However, blank lines may

occur any place within the program.

STRING MANIPULATION

The basic form of a string is a sequelce of characters enclosed in

double quotes. Any character at all may appear between the pairs of quotes,

-7 3-

except double quotes and (perhaps) slash, but including single quotes, for

instance.

e.g. "HER PENSIVE AQUAMARINE EYES DIDN'T BL1Nir"

A String may also be represented by c stringname, in which case the string-

name may be Ased in place of the literal string it represents. To name a

string, the SET command is used. Its format is

SET stringname TO string

e.g. SET COLOR TO "AQUAMARINE"
SET QUALITY TO "PENSIVE"
SET QUANTITY TO "A THOUSAND AND ONE"

The stringname COLOR is said to have the value AQUAMARINE after this state-

ment. Its value can be changed at any time by doing another SET.

A string may also be represented as a concatenation (placing side by

side) of smaller strings, so that

"HER" QUALITY COLOR "EYES"

could be the same string as the first example above.

Pure numbers are taken as literal strings even without the quotes

around them. Thus both

SET COUNT TO 4
aAd SET COUNT TO "4"

have the name meaning.

Throughout these specifications, when the word "stringname" appears

in a statem.mt ')rrAt, it means that in that position a single name may

be used, with the restrictions specified above fcr stringnames. When the

word "string" appears, any of the above forms of a string may be used, as

well as any of the forms to be specified below under List Manipulation.

In particular, the word "string" may stand for a single literal string,

or a single stringname, or a sequence of literal strings and stringnames.

Every stringname is a string; but the converse is not true.

Lists

A list is a string consisting of a sequence of smaller strings sep-

arated by a special character. Although it Is stored just like an ordinary

string, and has a name just like any other string, a list is normally used

in a different way. It is used, in fact, as its name implied, to keep a

list oC a number of separate items, each of which is a string of some kind.

-74-

MINORCA provides functions to create and maintain lists. To create a list,

or to add as item, the form is

ON stringname PUT string
ONBOTTOM OF stringname PUT string

If "stringname" is a previously defined list, these functions add the new

item "string" to the top (beginning) or bottom (end) of the list designated.

If no such list yet exists. either function defines a list with the name

given, and the item "string" becomes its first item. If "string" is or

includes the name of another list, that entire list is added to the spec-

ified list. Lists may also be specified e).plicitly by u51ng the set

command. Each item of the list, that is rot itself a list, must be en-

closed in double quotes,

e.g. SET COLLEGES 10 "ILARVAn" "YALE" "PkOWN"

To remove an item from a list, MINORCA has the command

FROM stringname DELETE string

If string matches come item on the list specifind by stringname, the first

occurrence of the item on the list is deleted. If there is no retch, no-

thing is done. If string is the name of a list, then all items common to

both lists are removed from the list specified by stringname. If string

refers literally to an item on the list it must be in double quotes. For

example, if stringname is ANIMAL and string is DOG, all ele.nonts of the

list DOC are deleted from the list ANIMAL. Hoqtver, if stringname is

ANIMAL and string is "DOG", the element DOG is removed from the list ANIMAL.

List Manipulation

There are a number of functions of lists which can be used to gen-

erate strings, some of which are themselves lists. Any of these functions

can be use,. wherever a st4tement format specifies "string". (Among other

things this implies that some of the functions an be used recursively.)

The simplast of these functions has the form

ITEM string OF atringname

In this case the "string" is rneu,ally either A number of a stringname whose

value is a number, and stringname is the name of a list,

e.g. ITEM 0 OF COLLECELIST
or ITEM N OF CWIPMENT

-75-

If the list specified by "stringname" does not have enough Items to make

this a meaningful function, the result is a null string, or an empty list,

a string with no characters, no string at all. Occasionally d list may

be implicitly paired.

e.g. stringname pair I pair 2 pair 3
SALARIES LAWYER,15000,DOCTOR,20000,SOIDIER,5000

To receive the partner of the first member of the E3it use the command

ITEM FOLLOWING string ON otringname

The third list - handling function has the format

TOP OF stringname

Again "stringname" is a list. The value of this function is the first item

on the list, but when for, this function also removed the first item

from the list. For example, if the following two statements were Performed

in sequence

SET VALUEI TO ET OF ALIST
SET VALUL2 TO TO1 OF ALIST

the result would be that VALUE1 and VALUE2 would be different (prcbably),

and ALIST vonld have two fewer items than it did originally. The function

ITEM 1 OF gives the same value as TOP OF, but the side effects are dif-

ferent.

The last two functions which may be substituted for strimo are

EQUAOITIES OF stringname, stringname
DIFFERENCES OF stringname, stringname

In each case the two stringnames refer to different lists, and the result

is a list. EQUALITIES gives all the elements common to both lists; DIFFERENCES

produces a list with all items on the first list that are not on the second.

ray of the list functions may, if necessary, be used on normal strings.

Differentiating Stringnames From Their Values

Occasionally it will he useful to have a stringname whose immediate

value is snother stringname, or it may be necessary to have a list of

stringnares rather then a list of the ^xplicit str ngs which they represent.

One problem, for example, might be in the statement

(1) GO TO COLLEGE
Or

(°) IF ITEM 4 OF COLLEGE IS EQUAL TO "HARVARD" GO TO LOCATION
1 ELSE CONTINUE

-7G-

In (1) ole may indeed wish to go to location COLLEGE. However, one may also

wish to transfer to the location whose name is the string stored et COLLEGE.

In (2) one may want to know if item 4 of list, COLLEGE is equal to "HARVARD".

Ore may, however, wish to know if the string whose me is the value stored

at item 4 of COLLEGE is equal to HARVARD. There are two proposed ways of

distinguishing a value of an item from its name. One method is to precede

the ambiguous term with VA%1JE OF. The statements would look like

GO TO VALUE OF COLLEGE
GO TO (COLLEGE)
GO TO VALUE OF ITEM 4 OF COLLEGE
GO TO (ITEM 4 OF COLLEGE)

Would the scriptwritIrs express a preference as to which method they would

like implemented?

OUTPUT and INPUT

In the current version of MINORCA there is only one output statement,

in two forms:

CRT string
and CRT+ string

both forms display the string on the console cathode ray tube. The first

form erases anything that may have been there before, the second adds the

string to whatever is already displayed, starting on tie 'irst free line.

Special characters for format control may be included in the string. A

number following CRT will be interrreted to mean how many seconds the dis-

play should remain on the screen. Otherwise the display %gould be removed

either when the next CRT statement was encountered it when the screen was

filled.

There is also only one input statement

KEYBOARD

This causes the com?utzr to wait for the 'text response from the typewriter

keyboard. Whatever is typed in is stored for analysis or a strin3 called

DPUT. Wien type-in is complete, the script resumes at the statement fol-

lowing the KEYBOARD state:ent.

Associated with the input and output statements are tEe two control

statements

RECORD
and RECORDOFF

-n-

These are really system control functions and will probably be executed only

by the control script. When record is on, all output and all input re-

lating to a particular console, together with the script name, frame number

and statement number of the statements that generated and received it, is

kept on a file for later examination of printcut.

Arithmetic

MINORCA currently has only the most primitive of arithmetic capabil-

ities. As soon as a need for more involved statistics arises more arith-

metic functions can be easily implemented. There are two statements, each

in two forms.

INCREASE stringname
INCREASE stringname BY string

DECREASE stringname
DECREASE stringname BY atring

In each case "stringname" is assumed to be the name of a string with a num-

eric value. "String" is also normally either a number of another stringname

with a numeric value. If the second part of the statement is not included,

the value to be added or subtracted is taken to be one.

Branching

The principal branch instruction is of the form

GOTO string

"String" can be the label ci any location or a string which contains the

label of a location. A stringname that represents a string of one of

these forms, etc.

e.g. GO TO COLLEGES
GO 10 VALUE OF COLLEGES

or CO TO (COLLEGES)

To get to another script, the appropriate instruction is

CALL name

where "name" is the name of a script or one of its entry points.

When the script wants to get 'Jack control after an excursion into

another script or even just into another area within its own boundaries,

the CALL or GOTO command is preceded by

STORE LOCATION string

where "string" has the same form as fur a GOTO statement. Then when the

remote script or section of script executes the statement

81

-78-

RETURN

control will be returned to the original script at the location specified

by the STORE LOCATION instruction. If the remote script in turn wants to

call on a third script, it may execute a STORE LOCATION instruction which

will cause its address to be stacked on top of a system list, and each

RETURN statement will restore the list to its previous state.

Since all scripts except the level zero con:-:ol script will be called

into action by a higher level script, the way for a script to relinquish

control, to end, step, etc., is to execute a RETURN. Control then ulti-

mately returns, as it should, to the control script.

ANALYSIS

The 1F statement is the basic decision-making statement of MINORCA.

It has seven elementary forms, which are

IF string EQUALS string THEN statement ELSE statement
IF string IS EQUAL TO string THEN statement ELSE statement
IF string IS NOT EQUAL TO string THEN statement ELSE statement
IF string IS GREATER THAN Ftring THEN statement ELSE statement
IF string IS LESS THAN string THEN statement ELSE statement
IF string IS EMPTY THEN statement ELSE statement
IF string IS NOT EMPTY THEN statement ELSE statement

The first three forms (first two identical .n function) are genera tests

for string equality, but can also be used on numbers. The 4th and 5th forms

expect the strings to be explicitly or implicitly numeric. The last two

forms are designed to test lists. Any statement may follow the THEN and

ELSE, including another IF statement (this is discouraged). If the con-

dition is satisfied, the statement following the THEN is executed, and that

is succeeded by the next numbered statemet in the script, bypassing the

ELSE clause, if there is 'rte. The ELSE clause may be omitted; if it is

present, its statement is executed if the condition is not satisfied. Con-

trol again proceeds to the next statement in the program. If the ELSE

clause is omitted, control proceeds directly to the next statement of the

script when the condition is not met.

More conditional phrases of the form

string condition string
or string condition

can be added between the IF and the THEN. The various condition phrases

-79-

are then joined by AND, OR, AM) IF, OR IF. Since this is all very much

like English construction it is much easier to understand than to de-

scribe. The rest.It is compvnd statements such as

IF ALIST IS EMPTY AND AGE IS LESS THAN 14 THEN SET CHANGES TO "LOW"

IF A EQUALS B OR C EQUALS P AND IF E IS NOT EMPTY THEN CONTINUE ELSE GOTO F

The second example illustrates the uue of the CONTINUE statement. It may

be used anywhere as an ordinary statement. However, it does nothing. It

also illustrates the importance of the hierarchy of the connectives. These

connectives combine :he two adjacent conditions to form one. This causes

no problem is all the connectives In an IF statement are the same, but when

they are not, the order in which the conditions are combined affecte the

meaning of the statement. The connective hierarchy, in the order in which

they are applied is AND, OR, AND IF, OR IF.

Keywocds, Decomposition and Recomposition

For this discussion the reader is assumed to have some familiarity

with the r_LIZA language. The differences between ELIZA and MINORCA in the

area of keywords, decomposition and recomposition will be discussed.

One of the main problems with ELIZA is the fact that nost dictionaries

are only o use to the small scrip: in which they are specified. In MINORCA

dictionaries may be specified anywhere and used anywhere. Each dictionary

must begin with the statement

DICTIONARY stringname

and end with the statement

END DICTIONARY

In between these two statements any number of keywords may be defined

in the form

keyword priority number (decomposition rule 1) statement
(decomposition rule 2) statement

e.g. College 100 (0 interested 0 College) GO T(' LOCATION.1

(0 not interested 0 College) GO TO LOCATION.2
(0 College 0) ON OUTPUT PUT ITEM 1 OF ANALYSIS, CONTINUE

The keyword is the word for which one is looking (Each keyword must be pre-

ceded by a minus sign. Blanks are ignored so keywords may phrases.).

The priority number (which if omitted is :Asumed to be 0) can give a keyword

a higher value than the rest, thus csusinps it to be looked for fitst. The

-80-

decn7position rule is maeched. *If there is no match, the next decompos-

ition rule is scanned, then the next keyword until the end of the dictionary

is reached. If no match is encountered in the dictionary, control is

returned to the next statement in the script from which control originated.

In MINORCA keyword analysis of a string is called for explicitly

by the ANALYZE statement. Any string may be analyzed, although INPUT

(which contains the latest typed response) is assumed if a string is not

not specified. The form of the statement is

ANALYZE IN stAngneme

or

ANALYZE string IN stringname

String is included, is the string to be analyzed. Stringname is the name

of a dictionary of keywords.

One call for analysis might look like

SET LOCATION.1 TO "COLLEGE"
SET LOCATION.2 TO "JOB"
SET LOCATION.3 TO "MILITARY
ANALYZE IN DECISION
ANALYZE IN DON'T.KNOW

The first three statements establish transfer points from the dictionary.

The input will first be analyzed in DICTIONARY DECISION. If no match is

encountered :1.n that dictionary it will then be looked up in DICTIONARY

DON'T KNOW.

Note that the list called ANALYSIS in the above dictionary refers to
elements of the decomposition rule. Item 1 of analysis Is all words
preceeding the word college; item 2 is college.

8 1

-81-

APPENDIX

This appendix provides a formal definition of the MINORCA language.
It is a definition of the form of the language rather than a grammar for
generating the language, although the definition c7,uld be converted to a
grammar without much difficulty.

The form used here is a variation on I.ackus normal. Single lower-

case words are used for elements of the language being defined. Square
brackets [) enclose an optional component of a right hand part of a rule.
Square brackets followed by a degree sign [1° encloses a component which
can occur any number of times or not at all. Exclamation point indicates
a choice between the components it separates. The terminal chracter per-
iod is represented ty the word "period" since it is also used as a meta-
character. Carriage return or end of card is represented by "end-of-line".

Blanks are a special problem. Outside a literal string, wherever
one blank may or must occur, any number may be used. In certain cases,
the required presence of at least one blank is indicated by the word "blanks".
Otherwise, the general rule is that every stringname and number must be
delimited by at least one blank if it is not otherwise delimited by a
comma or a double quote, and that a statement label must begin at the be-
ginning of a line.

char : :- AIBICI...IYIZt011I21...!9I periodtI+t-t1100/I$

digit ::- 011121...t9

nondigit AIBICI...IYIZI period!- 1...18

xchar char! blankl,I(t)

number ::. (+I-) digit [digit)*

literal "[xchar)."Inumber

stringname [e.arr nondigit [char] °I VALUE OF string! (string)

label ::. stringname

string ::- string [string).

string 1: literal I

stringname I

ITEM string OF string I

TOP OF stringname I

-82-

EQUALITIES OF stringname, stringname I

DIFFERENCES OF stringname, stringname)

ITEM FOLLOWING string ON stringname

scriptname ::= xchar (xchad°

script ::. SCRIPT scriptname eA-of-line

LEVEL string (comment) end-of-line

((statement (comment)! comment) end-of-line)°

ENDSCRIPT end-of-line

comment ::. *(xchar)°

statement ::= blanks COMMON stringname (,stringname)

label DICTIONARY end-of-line

(dictionary...ntry end-of-line)°

blanks ENDICTIONARY

blanks ENTRY POINT scriptname

blanks BACKUP POINT

blanks PUNTENTRY

::. (label) blanks command

command ::. CRT (+) ((number)] string

::= KEYBOARD

SET stringname TO string (,string)

::. ON stringname PUT string (,string)

::. FROM stringname DELETE string (,string)

INCREASE stringname (BY string]

DECREASE stringname (BY string]

ANALYZE(stringname,) stringname

APPENDIX F

The Addition of Statistical PriLitives to TRAC

Charles S. Wetherell

-83-

::- CALL sctIptname

RETURN

::- PUNT

::= BACKUP

::= IF condition [AND condition! OR condition! AND IF
condition! OR IF condition)*

- THEN command [ELSE command]

condition ::- string EQUALS string

::= string IS EQUAL TO string

::- string IS NOT EQUAL TO string

::= string IS LESS THAN string

::- string IS GREATER THAN string

::- string IS EMPTY

::- string IS NOT EMPTY

dictionaryentry EQUIVALENTS liters', literal kliteralr

::- EQUIVALENTS literal - literal (literal):

literal decompositionrule end-of-line

[blanks command end-of-liner

deco4poeitionrule ::= (element (clement)°)

decent ::- number! literal! (stringname)

Within a dictionary entry some of the usual rules are changed slightly.
An element that is a literal need not have the usual double quotes. Also
the form (n), where n is a number, will be recognized as a valid string in
the commands following a decomposition rule. (Its value is the match for
the nth element in the decomposition ruse.

INTRODUCTION

This paper ;,resents a package of statistical operators designed to

operate within the context of the string handling language TRAC. The

need for this package arose within a research project conducted by the

Farvard Graduate School of Education. Before the work was very far ad-

vanced, it was clear that a careful analysis of the structure of TRAC and

of the statistical problems to be solved was needed. Once this analysis

was made, tie implementation of the package was relatively easy. However,

several limitations were recognized and when the work .38 done, it was

clear that the package could be extended in several directiond. I shall

discuss the history, design, and future of the package and the use of these

extensions in other TRAC systems.

TRAC is the trademark of Rockford Research Institute, Inc., Cambridge,
Massachusetts, for its string handling language.

-85-

THE BACKGROUND OF THE PROBLEM

The need for a statistical package within the language TRAC first

arose at the Information System for Vocational Decisions Project (1SVD),

funded by the United States Office of Education and administered by the

Harvard Graduate School of Education (Tiedeman, 1965). This project, a

large one, will develop methods to train students in the methods of de-

cision-making, particularly in the choice of vocations, through the use of

computer-controlled consoles and individualized personal guidance. Students

will have access, via the computer, to large data bases of information about

decision-making, the "world of work," the local employment and economic

situation, and their own persunal data (perhaps compounded with data about

other students). The project investig,itors will have to collect, collate,

evaluate, and compile this data. To do this, they must have a statistical

picture of the student's activities with the data base and statistical

methods to transform the raw data into a form suitable to students.

The student's interaction with the computer will be controlled by a

"script". As the student "plays" the script, he will, possibly unknowingly,

call various programs to life and rause informations to be retrieved from

the several data bases. This information, however, may not appropriate

for the student as it stands. If it is not, the script will cruse the

proper statistical actions to be taken. These may be as simple as scaling

the numbers and as complicated as discriminant analysis. It is also the

responsibility of the script to interpret the information for the student

within the context of the particular play of she script in which the student

is engaged.

This all assumes a control language with whirn thi investigator can

manipulate the programs and data structures of the system int,- a script.

Basically, that control language is TRAC. Actually, the language which

script writers use will be considorably mote sophisticated. Presently,

this higher language is interpreted by the TRAC processor and certain TRAC

procedures at the time of the execution. Eventually, it may be compiled

at the time it is written, with few references to the TRAC interpreter.

-86-

-87-

However, the compiler may be written in TRAC and the TRAC interpreter may

have full control of the computer while the compiled program is run. The

object code may also be TRAC.

Since the investigator needs statistical powers in the two contexts

and since both contexts will involve the use of TRAC, it is clearly nec-

essary to attempt the statistical work within TRAC. The solution is to

add a block of primitives to TRAC which will perform the operations needed

without disturbing the present set of primitives. FoltunateLy, there exist

a set of statistical operato:..s which fit the form of TRAC primitives and

which produce the statistics which ISVD needs.

THE STRUCTURE OF TRAC

TRAC is a string handling language proposed and first presented by

Mooers and Deutsch (1965 and 1966). It bears a good deal of resemblanPe

to several other string and list processing languages, most notably LISP,

GPM, COMIT, and SNOBOL. The basic entities with which it operates are

stLings of BCD characters and it manipulates these uith a relatively simple

interpreter. The basic philosophy of TRAC is that of a macro- expansion

language. More on TRAC will be found in Appendix A, Mooers' definitive

article (1966).

The arithmetic capability of TRAC is very limited. The arithmetic

operations all perform Arabic arithmetic on BCD int^ger strings, that is,

they operate right to left on strings of indefini length by manipulation

of BCD characters. While this provides arithmetic of a natural sort, and

may be expanded to simulate all arithmetic operations, it is inefficient

for anything but simple manipulation of integers. Thus, if a statistical

package is to be added to TRAC, a new set of arithmetic operators will be

needed which will take advantage of the floating point arithmetic provided

by most computers. However, they must have the form of the TRAC primitives

and the data on which they operate wilt have to confcrm co the data storage

procedt:res of TRAC.

The Beaton set of linear o;,!rators is precisely this type of package.

These operators map various combinations of matrices, vectors, and scalars

onto other combinations. With the operators, all of lineary parametric

statistics may ba done, that is, they are a complete basis for most of the

standard statistics. Further, each operator may be cast in the form of a

function with a fixed number of arguments. Lech argument is itself an array

of real numbers. With these operators and supporting functions to manip-

ulate arrays, a statistical package for ISVD could be constructed.

"Statistics" will be used in two senses in this paper. In one sense, it
refers to a body of knowledge lying within mathematics and in the other, it
refers to individual numbers containing information about certain systems.
the usage should be clear from context.

-88-

-89-

TRAC, as designed, is modular. That is, thu addition of a primitive

function involves only the addition cf one more name to the list of functions

available to the processor. It would be possible to have an interpreter

which was impotent because it was not supplied with primitives. Any given

function may be eliminated and the others will not be affected. No function

relies oa any other and all common pieces of code are contained within the

body of thE. interpreter. The addition of this statistical package can be

made without affecting the rest of TRAC. ISVD, and other users, will be able

to add or delete the package at will. I shall return :o this point later.

THE BEA1ON OPERATORS

The basic concept behind the package of functions which I shall

develop for- inausion in TRY', is the.. advanced by Beaton: simply, every

statistical operction on a linear model may be handled by a "small" set

of operators. In any given situation which one wishes to study statis-

tically, there will be several variables to be measured, and of these

variables, it is to be hoped that some will depend on the others. A

model is assumed for the dependency and various statistics may be calcu-

lated to check the validity of the model. Beaton showed that if the ob-

servations were arranged in a matrix in a certain way, then there is a set

of about ten operators that will calculate, singly and in composition,

every statistic based on a linear model for the dependency relation. Fur-

ther, it can be shown that any curvilinear model may be reduced to a linear

model. Thus, the operators of Beaton suffice to do almost all possible

statistical calculation. Thcy fail only when the statistic needed is one

based on frequency counts ,r similar discrete groupings of continuous

variables. On the other hand, there are, compared to the number of linear

statistics, few of these mavericks, albeit several of them are quite important.

The Beaton operators take as arguments arrays; scalars, vectors, and

matrices. Date. in TRAC, LCD strings, ale stored as sections of a long vec-

tor. It has long been known that an array may be stored as a vector by

developing an appropriate mapping between the subscripts of array elements

and the linear subscript on the vector. Thus, the statistical data with

which ISVD will transact may be handled by TRAC without doing violence to

the storage mechanism of TRAC. The set of Beaton operators and the atten-

lant arr.7% manipulation primitives fit the specification which we laid out

for the statistical package. Fol)owing this reasoning, ISVD decided to

implement the package within TRAC.

-90-

THE STORAGE OF ARRAYS

When the desic:a of this package was begun, I realized that limiting

arrays to the two dimensions required by the Beaton operators was an arti-

ficial restriction. So arrays may have arbitrarily high dimensions: that

is, the dimension may be any integer from zero on up. Similarly, subscripts

may take any negative, zero, or positive integral value. The typical array

will be n-dimensional and the subscripts along dimension i will range from

a lower bound 1
i
to an upper bound ui, with th.- only restrictions being that

li and ui both be intLgers and that li is less than or equal to ui. The

differenceu-1
i
will be kno "n as the range of subscripts along the di-

mension i. Arrays elements may be any real numbers, as expressed in decimal

notation.

Of course, no computer is going to be able to handle an array of di-

mension 40 and script range l0 along each dimension. That would require

at least 10
40

cells of storage and no computer comes near that figure. An

array with an upper subscript bound of 123 x 10
67

would also be difficult,

even if the lower bound along that diliension were the same; similarly an

array with an element of the site 10
80

woult: be difficult. The reason for

these problems is that we would like to make our array storage rnd arithmetic

use the arithmetic capacities of the machines upon which the primitives are

run. But most machines have a limited range cf sizes of numbers which they

can accept and manipulate. They also all have severely limited storage cap-

acities. So, although the coding for the package is in ALGOL without

reference to a specific machine or to the inherent hardware limitations of

most computers, these bounds will have to be kept in mind in any actual

implementation.

The storage of strings in TRAC maims some concession to the structure

of computers. Intuitively, a string is a sequence of e.aracters, linearly

ordered and finite, possibly having a name. Movers' method of storage

makes this concept somewhat more explicit so thar it may be mechanized.

In the :rocess, some conceptual simplicity is lost. The concession for-

malists the relation of string and nane and required the use of certain

-91-

9,5

-92-

heading information which travels with the string. The amalgam of string,

name, and heading is a "form".

The heading information explicitly points to the ends of the string

and the name and from the structure of a form, pointers to their beginnings

may be calculated. It also contains some abstruse materiel of use to the

interpreter. The actual order of these elements is

<type, <hash-code> <internal-text-pointer> <end-of-text-pointer>

<end-of-name-pointer> <text-string> <name-string>

Each element, except the <tlxt-string> and the <name-string> are the BCD

strings which were to be stored. The <type> is a code which designates the

type of the string; p:esently there are primitive, string, and machine type

codes and I am adding array type. The <hdsh -code> is a technical device

used by the interpreter. It is desc'ibed for completeness' sake only. The

<internal-text-pointer> is an index manipulated by .several of the original

primitives. It will not be used by any of the r.rimitives in the array pack-

age and will be employed for a different purpose. The <end-oftext-pointer>

coltains the displacement of the last celI of text from the <type> and the

<end-of-name-pointer., contains the displacement of the last character of

the name string. These last two pointers simply formalize the concept of

the ends of the string and name.

If the TRAC interpreter is given the command

f(ds,waldo,Th!s is a string.)

it will create a forn whtch looks like

Cell 00 <type> 2

Cell 01 <hash-toee>
Cell 02 <internal-text-pointer>

We use neither
of these.

Cell 33 <end-of-text-pointer> 21

Cell 04 <end-of-name-pointer> 26

Cell US 'T' (i.e., the literal BCD character 1)
:ell C6 shs

Cell 01 'is

Cell 08 's'

Cell 09 "
Cell 10 sis

Cell 11 se'

Cell 12 "
Cell 13 'a'

Ccil 14 '

-93-

Cell 15 's'

Cell 16 't'

Cell 17 'r'

Cell 18
Cell 19 'n'

Cell 20 'g'

Cell 21 '.'

Cell 22 'w'

Cell 23 'a'

Cell 24 '1'

Cell 25 'd'

Cell 26 'o'

The form will be positioned in a long integer typed vector in storage, the

"f" vector, with only the address of the <type> of the first form kept as a

reference point. Forms are found when needed by a leapfrogging technique,

using the <end-of-name> pointer to find the next form when the form being

inspected does not fit specifications of the one being searched for. The

forms are laid in storage at the riett end of the "f" vector, with new forms

added at the left. Thus storage looks like

free-storage:form-n...:form-3:form-2:form-1

with low numbers denoting older forms. The whole mechanism is relatively

simple and makes it easy to houseclean and garbage collect storage. More

on this is in Mooers, 1966.

The problem is to fit array storage in with this well-established scheme.

A method to map arrays onto vectors is well-known and I shall use the one

described in the MAD manual. Combining it with TRAC will create an efficient

and flexible storage method, at the same time preserving the structure and

mechanisms of TRAC.

STORAGE DESIGN

The <type> or arrays will be 4. The <hash-code> will be left as it

is now. The <internal-text-pointer> will not be needed for the package and

so is renamed the <dimension>. This will be an integer from zero up and

will be the dimension of the array which the form stores. The next two ele-

ments of the form will remain as they were, as will the <name-string>.

The major change comes in the <text-string>, which now will contain a com-

bination of integers and real numbers. The integers will be subscripting

information and the real numbers the actual elements of the array.

To convert the subsctipts naming a particular element of the array

into a position in this vector, a mapping function must be used. If the

matrix is a scalar, there is no mapping function and the value of the scalar

is simply contained in one word, the fifth word of the <type> and the <end-

of-text-pointer> contains the integer 5. If the array has dimension d

greater than zero and if 1, is the lower subscript bound along dimension

and u
i

the upper, where i is between 1 and d, then we can define a number

b by

d d-1
1) b 6 + 2d - E { 11 -) + 1)) (1

d-1+1
- 1)

The number b will be known as the "base" of the array mapping function.

Now is an element a of the array is given and we wish to cal-
sdsd-1 ... ;281

culate the linear subscript of the element, thin

d d-i

2) r L { n (u -)) (s
d-1+1

- 1) + b
1 -1 Jul

The <type> cell of the form is (arbitrarily) assigned the linear subscript

zero. This means that the array element with lowest possible subscripts

will have linear subscript 6 + 2d. This leaves precisely enough room for

the subscript infccmation, required for the calculation of these linear

subscripts, between the <end-of-name-pointer> and the first artay element.

-94-

-95-

The format of the text string will be

<base> <11> <u1> <12> ... <1d> cud>

1 "1 1<aidid-1
1
' 4

d-1 "4 ul

... 12+ 1 11'

04. ca
udud_, u

The elements of the array are laid into the form with their right -moat sub-

scripts varying most rapidly. Also, the right-most subscript bounds, 11 and

u
l'

occur on the left end of the form. This makes access to them easier

in later computations.

The ALGOL array "waldo", declared

array waldo(-1:0,3:5,-2:0)

has a total size of 18 elements and a dimension of 3. The subscript infor-

mation for "waldo" is

13 -1; u3 0; range3 1

12 3; u2 0 5; range? 2

11 -2; u1 0; range, 2.

1) b 6 + 2.3 - (3.3(-1 - 1) + 3(3 - 1) + (-2 -1)1

12-- (-18 + 6 - 3)

27

The element waldo_1,3._2 mars to the linear element

4) r (3.3 (-1 - 1) + 3.(3-1) + (-2 - 1)) + 27

- -18 +6- + 27

= 12

This is the first element of the array in the form and is precisely 6+2d

words from the <type> cell. Similarly, waldompo has 1;oear subscript

9:1

-96-

5) r- [3.3 (0 - 1) + 3 (5 - 1) + (0 - 1) + 27

- -9 +12- 1 + 27

29

which is 17 cells from the first clement and which uses the 18th word of

array storage. This is precisely correct for an array of 18 elements. This

ecample array will look like the following diagram when it is stored as a

form:

Cell 00 <type> - 4 (for array type)
Cell 01 <hash-code>
Cell 02 <dimension> - 3
Cell 03 <end-of-text-pointer> - 29
Cell 04 <end-of-name-pointer> m 34
Cell 05 <base> m 27
Cell 06 <11> -2

Cell 07 <u1>

Cell 08 <12> m 3

Cell 09 .01
2

5

Cell 10 <13> m -1

Cell 11 <u3> a 0

Cell 12 waldo
-1,3,-2

Cell 13 waldo
- 1,3,-1

Call 14 %/cid°
1,3,0

Cell 15 waldo
-1,4,-2

11118

Cell 29 waldo
0,5,0

Cell 30 'v' (i.e., the literal BCD character w)
Cell 31 'a'

Cell 32 '1'

Cell 33 'd'

Cell 34 'o'

There is one difficulty with the implementation of this plan. In

the "f" vector there will be integers, real numbers, and BCD characters

mixed together. Fortunately, the BCD characters may be coded as integers,

but there is no way to mix real and integer quantities in the same vector

in ALGOL. One solution is to add a vector for the storage of real quanti-

ties which will be controlled by the same stack pointers as the "f" vector.

If this is done, however, there will be great gaps in both the integer and

lui

-97-

real storage, alternating with one another. Wherever a real number has been

stored, there will be a blank space in the "f" vector and vice versa. A

solutftl, which avoids this problem is storing pointers to the real vector

with the heading information for the form. The <text-string> for the

form would then be packed down into real vector and eliminated from the "f"

vector. However, arrays hsfulled this way would be difficult to manipulate.

With both these solutions, a fifth vector is added to TRAC's storage system,

and this is also unfortunate, for the four vector storage system of TRAC

makes it easy to do variable storage allocation. This possibility would be

destroyed by the addition of a fifth vector.

The approach I have taken is to add the fifth vector, the "a" vector,

using the stack controls for the "f" vector. However, in the actual im-

plementation of the package, I will declare the two vectors tu be "equiva-

lent", under the MAD or FORTRAN meaning o. the word. This will mean that

there are really only four vectors snd that the program can fetch and store

in either real or integer mode from any element of the combined "a-f" vec-

tor. In any implementation, it would even be worthwhile to sabotage the

comp:led object code to achieve this result, even if the language in which

the package is written at source level does not allow the declaration of

equivalence ae ALGOL does rot.

101

THE PRIMITIVES

In this section the primitives are described and their definitions

set out.

Array Definition

#(as,N,d,ld,u_ 1 2d + 3 arguments.

The array named N is defined with dimension d and subscript bound pairs

1
i
and u

i
for i between 1 and d. N is a BCD string and d and the bounds

pairs are BCD integers. Extraneous arguments are ignored. If there are

fewer than d bounds pairs, the function is not executed. The elements of

the array are all set to zero. This primitive corresponds, in some sense,

to the ALGOL

array N(ld:ud,ld
'

:u
-1' 1 1;)

As with all forms storage, any form of similar name is erased from storage,

whatever its type.

Dimension Value

i(av,N). 2 arguments.

The dimension of the array named N is returned as a BCD integer. If

N is not an array or if N does not exist, the value is null (not zero).

Subscript Bound Values

0(ab,N,i,$). 4 arguments.

The value of the sth (i.e., upper or lower, coded 1 or 0, respectively)

subscript bound of the array N along dimension i is returned as a signed BCD

integer (the sign is used only if the valus is negative). If i is greater

than the dimension of N or if N is not an array or does not exist, or if s

is not zero or one, the value is null.

Convert to Integer

'Car N a a 2 + d arguments.

-98-

]U:

-99-

This primitive returns as value the greatest integer less than or

equal to N where d is the dimension of N. If there are not
6clisd-1'""51'

enough subscripts specified, if a subscript is out of bounds, if N is not

an array, or if N does not exist, the value of the function is null. The

returned value is a signed BCD integer.

Set Array Value

gae,N,sd,sd_1,...,s1,M,tf,ti_1,...,t1). 3 f d + f arguments.

This primitive replaces the value of N with the value
sd'sd-1"."81

of M where d and f are the dimensions of N and M, resp2c-
tf,tf_l tl,

tively, and the si and the tj are BCD integers. If either M or N does not

exist, or either M or N is not an array, or if any subscript Is out of

bounds, or if there are not enough subscripts, the replacement is not per-

formed. The function has null value.

Read Array

l(ragelement-1,element-2 element-n). At least one argument.

This is simplified I/O foT arrays. Input is one real value per line

on the console. Each "element -i" is either an array name, or an array

name followed by an asterisk, subscripts, and another asterisk. The sub-

scripts are BCD integers and are separated by asterisks. An array which

does not exist, an element which is not an array, or one for which there

are not enough subscripts or for which the subsc.:ipts are out a bounds

will be ignored. If an element is simply an array name, the entire array

is read in, the rightmost subscript varying most rapidly. Excess sub-

scripts within an element wIll be ignored. The valul of the function is

null. The numbers read from the console will be in "F" or "E." notation

as that is understood within MAD. Different implementations may give

different error indications depending on local I/O routines or different

forms for the input.

Print Array

,(pa,element-1,element-'r ,element -n). At least on2 argument.

1 03

-100-

This is similar to "re ", except that arrays or array elements will

be printed on the console in "E" notation and a simplified format.

Read by Format

ii(rf,format,device,element-1,element-2,...,element-n).

At least three arguments.

The format string is of -he same nature as that used in fORTRAN or

MAD. The "device" is a number or name which the local operating system may

recognize as a call for use of an input device. The input is read off the

device named according to the format string. The forme string is an or-

dinary BCD string in TRAC which also conforms to the local rules for format

statements. Error indication and recovery will depend on the local system.

As in "ra", elements in error will be ignored. The value is null.

Print by Format

i(pf,format,device,element-1,element-2,...,element-n).

At '.east three arguments.

The same as "rf", except that the values are read from the

named onto the device.

Array Addition

i(aa,A,B,C,Z). five arguments.

If A, B, and C are three arrays of the sane dimension an.,

range, along each dimension, then C is replaced by the element su

B. If A is a scalar and B and C are similar arrays, then C is ty

B with A added to each element. The value of the function is t

or Z. The value is Z only when the addition is unsuccessful, i. ne

of A, B, or C is not an array or does not exist, or when there

sion or subscript range error. Z is any BCD string and is plac

active or neutral string as the call for the function was acti al!*

4
Two arrays are similar if they ate of the same Utmeosion, and

script range along each dimension is the same. The arrays need
the sane subscript bounds pairs; it is on1y necessary that ul
u '-1 for each dimension.

as
This set of error conditions, i.e., wrong dimension, subscri.

bounds, non-existence of an array, or form not of array type v,,
as the standard errors and the placement cf 1 in the arpropriate
will be known as a "branch to 1" or a "z-branch".

104

g

-101-

Array Multiplication

#(am,A,B,C,Z). Five arguments

The arrays A and B are multiplied together in the manner normal to

methematics and the result is placed in C. If A and B are scalars or are

vectors of the same length, C must be s scalar. A and B must always be of

the same dimension; the standard identification of a vector with a column

matrix will not be allowed, for example. The ona exception is that if A

is a scalar and B and C are similar matrices, C is the element by element

multiple of B by A. In any case, C needs only the right subscript ranges

and dimension to be a resultant matrix; the actual size of the subscripts

is not checked. The value is null. A branch to Z is taken on the standard

errors.

Array Inversion

0(ai,A,B,D,Z). Five arguments.

If A and B are similar square matrices and D is a scalar, then the

inverse of A is placed in B and D contains the determinant of A, if the

matrix A is non-singular. If the matrix A is singular, both B and D are

set to zero and the branch to Z is taken, as it is on the standard errors.

The inverse will be calculated by a combined direct and iterative method

and will be considered correct :hen it falls w:thin a pre-assigned tol-

erance.

Array_Transposition

0(at,A,B,Z). Four arguments.

If A and B are matrices and if the subscript ranges of B are the

reverse of chose of A, then B is replaced by the transpose of A. The

standard errors cause a branch to Z.

Beaton Routine MAD

0(af,A,B,C,Z). Five arguments.

If A and C are similar square matrices and B is a vect,r with the

sane lenAth, then

105

-102-

C
ij

= A
ij

/(B
i
.8

j
)

where i and j are normalized to lie between zero and the subscript range,

inclusive. If A, B, and C are all scalars, then

C A/B
2

.

If any of the B
i
are zero or if any of the standard errors occur, the function

is not performed and the branch to Z is taken. The value of tie function is

null.

Beaton Routine SCP

0(ag,A,B,C,Z). Five arguments.

If A and C are similar square matrices and B is a vector of the same

length, then

C
ij

A
ij

Bi Bj

If A, B, and C are scalars, then

C AB
2

The standard errors cause a *Jranch to Z. The value is null.

Beaton Routine SW?

0(ah,A,B,k,Z). Five arguments.

If A and B are similar square matrices with suoscript range n and k

is an integer with

and Akk 0 0, then

Aiij - Aik Ak
Akk

Bkj Akj/Akk' k

< k < n

i,j 0,...,n

i,j 0 k

In all these functions, we shall think of the subscripts as lying between
zero and the range for 'he particular subscript. This is, of course, not
true, since subscripts may lie between any two arbitrary bounds. However,

thinking this way makes the mathematics clearer and to be correct, one need
only add the appropriate lover subscript bound to each subscript.

1 0 6

-103-

Bik = Aik/Akk, i 0 k

Bkk - 1/A%k.

If Akk 0 or one of the standard errors occurs, the branch to Z is taken.

The value is null.

Beaton Routine DVEC

#(aj,A,B,Z). Four arguments.

If A is a square matrix and B Js vector of the same length and r is

range of the subscripts, then if

A > 0 for i 0,...,n

then B
1

If any element of the diagonal of A is less than zero or if any of the stan-

dard errors occur, the branch to Z is taken. The value is null.

Beaton Routine DIRPRD

#(ak,A,B,C,Z). Five arguments.

If A is a vector with subscript range m and V is a vector with sub-

sr..ript range n and C is a vector with subscript range (n+1) (m+1)-1, then

C
taf + j

= Ai Bj, i R 0,...,m; j 0,...,n.

If a sraAlrd error occurs, the branch to Z is taken. Otherwise the value

is null.

Scalar Absolute Value

(sa,A,B,Z). Four arguments.

If A rind B are scalars, B is replaced by the absolute value of A. On

the standard errors a branch to Z is taken. The value is null.

Scalar tx_konential

r(se.A.B,Z). Four arguments.

If A and B are scalars, B is replaced with eA. On the standard errors,

the brnch to Z is taken. The value is null.

1 0 '

-104-

Scalar Logarithm

#(91,A,B,Z). Four arguments.

If A and B are scalars and A is greater than zero, then B is replaced

by the natural logarithm of A. If A is less than or equal to zero or a

standard error occurs, the branch to zero is taken. The value is null.

Scalar Power

#(sp,A,B,C,Z). Five arguments.

If A, B, and C are all scalars, then C is replaced by A
B

as long as

that operation results in a well-defined real number. If it does not, or

if there is a standard error, the branch to Z is taken. The value is null.

THE CODING AND IMPLEMENTATION

This set of TRAC operators has been built on the basis of the standard

TRAC interpreter as described by Mooers (1966) and as coded in ALGOL by

Mooers and Deutsch (1966). This coding has been used as the model for a

TRAC interpreter in MAD, to be run on the MIT-CTSS time-sharing system.

The MAD-TRAC system has been running for about eight months at ISVD. I

have coded the primitives in ALGOL to match that of Mooers and Deutsch for

two reasons: the coding will be easily usable in other IRAC systems based

on the ALGOL-TRAC and it will be easily t7alislatable for use with the ISVD

interpreter. The coding presented hers is the ALGOL, but it is only the

first step in a two-step project. The second one will be taken as needed

within ISVD.

The only additions I have made to ALCOL-TRAC are the variables "charmi"

and "charpl", containing the BCD characters "-" and "+" respectively, the

switch diag, which is used for diagnostics and error recovery, and several

ocher procedures described below. Each of the primitives is coded as a

block which will fit with the other primitives in the interpreter without

mutual interference. These blocks may only be entered at the top and all

exits are unconditional transfers. Primitives freely manipulate the sev-

eral pointers available in the interpreter and the elements of the various

stacks, as do the procedures. The primitives are individually commented

upon in the code. There has been a conscious effort to make the code clear;

at times this effort has been at the cost of efficiency. In most cases

the inefficiency is easy to correct. However, as the coding is intended

as a guide to implementation and not as a strict set of instructions to

programmers, I leave this to the taste of the reader and user.

Several primitives have not been coded. These are the ones concerning

input and output of arrays. I feel that these will not be well done in

ALGOL and that the local environment will be the most important determinant

of their format. At ISVD, these routines will be written using MAD and

the local system prcvided I/O routines. In other systems, it ray well be

necessary to use asserbly lahguage routines to coae these primitiveq. Again,

the user will have to decide on his own m-thoc.; to implement these primitives.

-105-

1 0

-106-

Any method is legitimate as long as it conforms to the specifizatioA of the

primitives.

One Beaton operatcr, SDG, has not been implemented 48 a primitive.

At the present time, it does not seem necessary to use this routine. On

the other nand, it is not a very difficult routine to code and may be

added at any time. There are several other minor routines which are not

central to Beaton's thesis, but which he includes. They may eventually

be included in the ISVD system merely for the sake of completeness.

The procedures I have added to ALGOL-TRAC are mainly housekeeping and

array indexing routines. In several places in the present code, a type of

4 will cause an error branch. It has been necessary to side-step this

difficulty. This is primarily the reason for "getfa", "delete", and

"zbranch". The routines "index" and "map" are used to calculate linear

subscripts of elements of arrays. Finally, "convert", "expand", and

"setup" handle the conversion between BCD integers in arguments and machine

integers and vice versa. The routine "delete" is the only one which

actually replaces a present routine. It was necessary Co garbage clean

the "a" vector.

As noted above, there is a tacit assumption in ALGOL that all

arithmetic is of unlimited range. This, of course, is not true on any

real machine. ALGOL also does not provide error recovery procedures for

machine conditions like overflow and underflow. It is for the user to

employ whatever mechanisms his machine provides to make the assumptions

about arithmetic as true as possible and to effectively handle errors of

various sorts. Guides beyond this gentle warning in this area would be

futile.

THE CODED PRIMITIVES

The coding is in publication ALGOL, with the exception that the

Boolean connectives 'and', 'or', and 'not' are written cut in full. As

such, it has never been run on a machine. However, translations of por-

tions of it in other languages have been attempted and successful. The

code may have errors in detail, but I believe that overall structure of

the routines is correct.

integer procedure convert(front,bck);
integer front,back;
value front,back;

begin
integer i,j,hold;
hold 0;

j 1;

if front . back
then begin

convert :. 0;
return;
comment In this c..ise, the integer to be converted is

either the null string or is nn argwnent from the
neutral string of no length (i.e., nonexistent);

end

else 17wifront + 1] Lharmi
or w(front + 1) cl

then begin
j :. (if w[front + 1] = charni t'en -1 else 1);
front :* front + 1;
end This is the case when 0-e integer in the neutral

string is Fr..7ce,led by a '+' or a '-' sign;

for i :. front +1 stems 1 until back
do hold :. hold x 10 + wfil;
convert := j x hold;
end This procedure converts integers in the neutral string into

their BCD representations. The hao of the BCD string is
pointed tc by 'front' and 007 tall by 'back'. The vall.e.

ceturnvi by convert is the ruchine integer;

procedure delete(i);
integer !;
value

begin

-107-

-1C3-

integfr j,k;
k := 1 + f(i + 4];
for j : i - 1 sten -1 until fn + 1
do begin

f[j + k] := f(j];

flj + a(j];
end;

fn In + k;

end See 'delete' in MOoers' version of the interpreter;

integer procedure expand(oointer);
integer pointer;
value pointer;

begin
integer place,n,q,r;
place wl;

n : abs(f(pointer]);
loop: if place . wn

then goto dia(2];
if n < 10
then begin

Apiece] n;

goto done;
end This part of the procedure does the expansion

when the machine word will expand into a single
integer;

q :° n/10;
:= n - q x 10;

w[place] r;

place := place - 1;
n q;

goto loop;
done: if sgn(f(pointer]) - -I

then begin
place : place - 1;
if place . wn
then goto dia(2];
w(place] charmi;

end If the machine integer was a negative number, the
BCD representation is preceded by a 1-1 sign;

expand : place;
end This procedure produces the BCD representation of an in-

teger from the machine representation. Roughly, it is the

inverse Jf convert. The value of the floic,:)n is a pointer
to the leftmust character of the BCD integer the n.(tral

string. The integer runs from this pointer to the end of
the P;eNtrat string;

s.

-109-

funaa: begin
integer i;
real temp;
getfa(2,5);
nq := rf;
getfa(3,5);
nq := rf;

getfa(4,5);
if f(np + 2] = 0 and f[nq + 20 = f[rf + 2]
then begin

for i : 1 step 1 until f(nq + 2]
do if f(nq + 5 + 2 x i] - f[nq + 4 + 2

0 f(rf + 5 + 2 x i] - f(rf + 4 + 2 x i]

then zbranch(5);
temp := a(np + 5);
for i := (if f(nq + 2] = 0 then 5 else 6 + 2 x f(nq +])
step 1 until f(nq + 3]

do a(rf + 1] a(nq + 1] x temp;
end This portion adds the constant named by the first

argument (which was of zero dimension) to each element
of th3 second argument and stores the result in the
third argument.

else if f[nq + 2) = f(np + 2] and f(nq + 2] = f(rf + 21
then begin

for i := 1 step 1 until f(nq + 2]
do if f[np + 5 + 2 x i] = f(np + 4 + 2 x I)

0 f(nq + 5 + 2 x i] - flnq + 4 + 2 x i]

or f(np + 5 + 2 x i] - f(np + 4 + 2 x i]

0 f(rf +5 +2 x 1] f(rf + 4 + 2 x i]

then zbranch(5);
for i := 6 + 2 x f[nl + 2] step 1 until f(np + 3J
do a(rf + := a(np + + a(nq + i]
end This portion checks to see if all the argtezente

are of the same dimension and each dimension has
the sane range (althougL not necessarily the sane
bounds) and if this is so, adds the first array
to the second, element by element, and stores the
result in the third array. This is an option
which will not occur if the first half of the
program has been executed;

got° nullret;
end;

113

-.110-

funab: begin
integer sub,uorl;
getfa(2,0);
get(3);
sub :. convert(rp,rq);
if sub > f(rf + 2) or sub < 1
then goto nullret;
get(4);
uorl :- convert(rp,rq);
if not (uorl . 0 or uorl 1)

then goto nullret
else begin

rf := (if f(rf + 2) 0 r:ten rf + 2

else rf + 4 + 2 x sub + uorl);
setup(rf,ct);
end;

4212 unstack;
cnd Thie primitive returns cm a signed BCD integer a dimension

bound value;

funac: begin
integer point;
real temp;
if f(rf + 2) - 0
then point :- rf +
else begin

point index(rf+3,3);
if point < 6 + 2 x f(rf +2) or point > f(rf + 3)
then goto nullret;
end;

temp a(pointj;
[(point) := a(pointl;
setup(pointoct);
a(poilt) temp;

goto unstack;
end Thie primitive converts an array element to an integer;

funae: begin
integer put,get;
getfa(2,0);

if f(rf + 2] . 0
then put 5

else begin
put :. index(rf + 2,3);
if put < 6 + 2 x f[rf 2] or put > t[rf +3]
then goto nullret;
end P%t is the location of the element in which we

shall st,e the new value;
np rf;

getfa(3 + f[np + 2],0);
if f(rf +2] =0
then get :. S
else begin

get := index(rf + 2,4 + f[np + 2]);
if get < 6 + 2 x f(rf + 2] or get > f[rf + 3J
then gcto nul]ret:
end Get is the location of the element to be fetched;

a(np + put] a(rf + get];
goto nullret;

end This primitive sets one array element t, !;:e value of
another;

funaf: begin
integer i,j,templ;
getfa(2,5);
np rf;

getfa(3,5);
nq := rf;
getfa(4,5);
templ f(np + 7] - f(np + 6);
if f(np + 2) . 2 and f(nq + 21 1 and f(rf + = 2

and templ = f(np + 9) - !kip + 81
and tempi . f(nq + 7) - Ong + 6)
and tempi . f[rf + 7] - f(rf + 6)
and tempi = f[rf + 9) - f[rf + 8)

then begin
for i := 8 step 1 until f[nq + 3]
do if a[nq + 7 + ij =0.

then abranch5);
for i :. 0 step 1 until tempi
do for j :. 0 step 1 until tempi

do almap(rf,i,j)j := almap(np,i,j)j/
(a(nq + 7 + a[nq + 7 + ;I);

comrent TVs hill does the crerat7:(; L4;o: t.A.) atrfcs L7ni
a vector are involvci. AC 2I: ("; t;;,- FfIC

lengths of the arrays invoi,i ,.n.1 on vossibflfty
a vector ele-:ent ting zev,,;

end

115

-112-

else if f(np + 2) . 0 and f(nq 23 . 0 and flrf + 2] . 0
and a[nq + i 0.

then a(rf + := amp 5]/a[nq + 51f2
else zbranch(5);
comment This portion takes care of all the arguments

being scalars or the standard errors;
goto nullret;
end 71.osaf. is Beaton routine DMD;

funag: begin
integer i,j,templ;
getfa(2,5);
nq rf;

geLfa(3,5);
np rf;

getfa(4,5);
tempi f(np + 7] - f(np + 6J;
if f(np + 2] 2 and ling + 21 1 and f(rf + 2] = 2

and tempi ffnp f 9] - f(np + 8]
and tempi f(nq + 7] - f(nq + 6]
and tempi f(rf + 7] - f(rf + 6]
and tempi + 9] - f(rf + 8]

then for i 0 step 1 until tempi
do for j : 0 step 1 until tempi

do a(rap(rf,i,j)] a[map(np,i,j)] =
a(nq + 7 + i) a[nq + 7 + J]

else if f(np +2J e 0 and f(nq + 2] - 0 and f(rf + 2J - 0
then a[rf + 5J :. a(np + 5] = a(nq + 5]$2
else zbranch(5);

goo:, nullret;

end 'fug ,13' is Beaton routine SCP. It has almost exactly the
care stroture as 1fUnaf' (DMD), except that the vector
elements may be zero for this routine;

-113-

funah: bin
integer 1,j,k,temp;
real pivot;
getfa(2,5);
np rf;

getfa(3,5);
get(4);
k convert(rp,rq);
temp f(np + 7) - f(np + 6];
if f(np + 2] . 2 and f(rf + 2) - 2

and temp f(np + 9) f(np + 8)
and temp f(rf + 7] - f(rf + 6]
And temp f(rf + 9] - f(rf + 9]
and 1 < k and k < temp + 1
and z(map(np,k,k)) 0 0.

then begin
pivot :m a[map(np,k,k)];
for i 0 step 1 until temp
do for j 0 step 1 until temp

4v if i 0 k and j 0 k
then a(map(rf,i,j)] a(map(np,i,j)) -

(s(map(np,i,k)) - a(map(np,k,j))/pivot
else if i, k and j -k or i -k and j 0k

then a(map(rf,i,j)) a(map(np,i.j))/pivot
else a(map(rf,k,k)) :1. 1/pivot;

end

else zbranch(5);
Rota nullret;
end 'f rah' is Beaton routine SW. The coding is a straight-

fort.vrd transtation of the algebra for the routine. Note
that 0,8 routine only operates when the two arguments are
matrices;

funai: begin
integer temp,hold,i,j,k;
real pivot,mult,temp2,chek;
integer procedure place(x,y);

integer x,y;
value x,y;

begin
place : temp x x + y + hold;
end There has to be a place to store an additional matrix

the sire of the one which is to be inverted ani also
a vector as long as the side of the array. lbws will
be stored in the left hand end of the 'a' vector, ani
this routine will reference the element subsoripted
with and in this storage area;

117

-114-

getfa(2,5);
np rf;

getfa(3,5);
nq := rf;
getfa(4,5);
temp := f[np + 7] - f(np + 6];
if f[np + 2] = 2 and fInq + 2] = 2 and f[rf + 2] = 0

and temp = f[np + 9] - f[np + 8]
and temp = f[nq + 7] - f[nq + 6]
and temp = f[nq + 9] - f[nq + 8]
and (temp + 1) . (temp + 2) < fl

then begin
comment The conditional checks to see that there are

actually two square arrays and a scalca, and
that there is enough free storage at the upper
end of the 'a' vector for the auxiliary vector
and matrix needed in the inversion;

hold := fl - (temp + 1) . (temp + 2) + 1;
for i := 0 step 1 until temp
do beg_in

for j := 0 step 1 until temp
do begin.

a[map(nq,i,j)] := 0.;
a(place(i,j)] := a[map(np,i,j)];
end;

a[map(nq,i,i)] := 1.;
end This little section transfers the original mctrix

to auxiliary storage, so that it will not be harred
in the inversion process anl places the identity
matrix in the inverse;

a[rf + 5) := 1.;

for i := 0 step 1 until temp
do begin

if a(place(i,i)] 0 0.
then goto loop
else for j i step 1 until temp

do if a[place(j,i)] 0 0.
then begin

for k := 0 step 1 until temp
do begin

alplace(i,k)] := a[place(i,k)]
+ ablace(j,k)];
afmap(nq,i,k)] := a[map(nq,i,k)]
+ a[map(nq,j,k));

glato loop;

end This secticn replaces a zero Fivc't
clement with a ncn-sero on,';

goto fat';

loop:

test:

-115-

pivot := a(place(i,i));
a[fl - i] := pivoc;
a[rf + 5] := a[rf + 5] x pivot
for j := 0 step 1 until temp
do if j

then begin
mult := a[pl.ace0,01/pivot;
for k := 0 step 1 until temp
do begin

abnap(nq,j,k)1 := a(map(ng,j,k))
- mult x a[map(ng,i,k)];

a[place(j,k)] := a(place(j,k)]
mult x a(place(i,k));

end;

end;

end This whole begin block does the Gauss elimination
for one row each time through the for loop;

for i := 0 step 1 until temp
do for j : 0 step 1 until temp

do a(map(ncl,i,j)) := a[map(no,i,j)]/a(fl - i];
comment This normalizes the inverse by dividing each row

by the appropriate pivot element. This was not
done before so that smell/ pivot elements)ould
not affect the array too much before they had to;

for i := 0 step 1 until temp
do for j := 0 step 1 until temp

do begin
alplace(1,j)) := 0.;
for k := 0 step 1 until temp
do a[place(i,j)] := a[rlace(1,j)] +

a(map(np,i,k)] x a[map(nq,k,i)];
end This forma the product of the original array

and the approximated inverse to check for size
of the residual. The check is simply an elc-cnt
by element tolerance _heck;

for i :- 0 step 1 until temp
do for j := 0 step 1 until temp

do begin
chek := (if i = j then 1. else 0.);
if abs(chek - a(place(i,j)]> .01
then goto fixup;
end If this test succeeds on all the elements then

the routine is finished. Otherwise, thc inlerse

is sent to an iterative routine to &T rope it;
goto nullret;

fixup:

fail:

-116--

for i := 0 step 1 until temp
do for j := 0 step 1 until temp

do begin
chek := (if i = j then 2. 0.)
a[place(i,j)1 := chek - a[place(i,j));
end This forms the matrix 21 - 114X;

for i := 0 step 1 until temp
do begin

for j := 0 step 1 until temp
do alfl - j1 := a[map(ng,i,J));
for j : 0 step 1 until temp
do begin

a[map(nqii,j)1 := 0.;
for k := 0 step 1 until temp
do a[map(ng,i,j)) := Almap(misi,j))

+ a[fl - 11 x afplace(k,J)1;
end;

end This little section has stored the i-th row of
inverse in the auxiliary vector ana then formed
a new row of the inverse by multiplying the
stored row by the matrix we calculated above;

aot() test;

[rf + 51 := 0.;

for i := 0 step 1 until temp
do for j := 0 step 1 until temp

do a[map(nchi,j)1 :r 0.;
zbranch(5);
end This ends the success:P.4i half of the conditional;

else zbranch(5);
end 1fUai' calculates the inverse and determinant of a given

matrix by the Gauss elimination method. If the residual
after multiplication of the original matrix by the supposed
inverse is too large, the inverse is improved by the applica-
tion of the iterative formula

Y = X4(21 - AX1,
where A is the given matrix, X is the attempted inverse a i
Y is an improved estimate. See Calingaert (1965) for the
details;

-117-

funaj: begin
integer i,temp;
getfa(2,4);
np rf;

getfa(3,4);
temp :- f(np + 7) - f(np + 6];
if f(np +2) . 2 and f(rf + 2] = 1

and temp . f(np + 9) - f(np + 8]
and temp . f(rf + 7) - f(rf + 6)

then begin
for i 0 step 1 until temp
do if a(map(np,i,i)] < 0.

then zbranch(4);
for i 0 step 1 until temp
_do + 7 + i] sqrt(afmap(np,i,i)));
end

else if f(np + 2] - 0 and f(rf + 2] - 0 and a(np + 5] 0.

then a(rf + 5) :- sqrc(a(np + 5])
else zbranch(4);

goto nullret;
end afunaja is Beaton routine DVEC. The only interesting

point is the check so that square roots of negative
nu.nbers will not be taken;

funak: begin
integer i,j,k;
getfa(2,5);
np rf;

gctfa(3,5);
nq rf;

getfa(4,5);
if f(np + 2) 1 and f(nq + 2) - 1 and f(rf + 2) . 1

and f(rf + 7] - f(rf + 6) + 1
(f(np + 7] - f(np + 6) + 1)x(f(nq + 7] - f(nq + 6] + 1)

then begin
k 8;

for i := 8 step 1 until fin? + 3)
do for j 8 step 1 until f(nq + 3)

de begin
a(rf + k) : afnp + I] a(nq + j);

k k + 1;
end;

end

else zbranch(5);
&oto nullret;
end " is FG2tC,,; rcutine N:tice h:w the in4e1

'k' is haniled. It conforrs rrecisely to the aigel-mic
Definition of the rc-eti,:e;

-118-

funam: begin
integer i,j,k,templ,temp..,temp3,temp4;
getfa(2,5);
np := rf;
getfa(3,5);
nq := rf;
getfa(4,5);
if f[np + 2] = 0 and f[nq + 2] = f[rf + 2)
then begin

for i : 1 step 1 until f[nq + 21
do if f[nq + 5 + 2 x i] - f[nq + 4 +2 x i]

0 f[rf + 5 + 2 x 1] - f[rf + 4 + 2 x i]

then zbranch(5);
for i := (if f[nq + 2] . 0 then 5 else 6 + 2 x f[nq + 2])
step 1 until f[nq + 3]

do a[rf a[nq + 1) + a[np + 5);
end

else if f[np + 2] = 1 and f[nq + 2] . 1 and ffrf + 2] - 1
and f[np + f[nq + 3)

then begin
a[rf + 5) = 0.;
for i :. 8 step 1 until f[np + 3)
do a[rf + 5) := a[rf +) + a[np + i] x nq + i];
end

else if f[nq + 2) . 2 and f[nq + 2] . 2 and f[rf + 2) .1 2

and f[nq + 7) - f[nq + 6) = f(np + 9) - f[np + 8]
and f[np + 7) - finr + 6) = f[rf + 7) - f[rf + 6]
and f[nq + 9) f[nq + 8) . f[rf + 9] - f[rf + 8]

then begin
tempi f[nq + 9) - Ling + 8)
tempt f(np + 7] - f(np + 6)
temp3 := f[np + 9) - f[np F 8]
for i := 0 step 1 until tempi
do for j :. 0 step 1 until temp?

do begin,

tempi := map(rf,i,j);
a[temp3] :. 0.;
for k 0 step 1 until temp4
do a[temp3] := a[temOT +

a[map(np,i,k)).a[map(nqsk,j));
end;

end
else zbranch(5);

got° nullret;
end 'f z-7' is the array r741t routine. the first

section r7.4itirlies tv;y ar2 elenent U elerent
e,,alar, the ecconl scotic,; nAtirlies floc) vcotore and
results in a s,...alar, and the fina1 section
t-oo natrices. :here are checks on the SilE of tutecoirts
throvhout th_ rrogran. the coding is pretty *14,2h a
straight tra,:s2rirtion of the algorithn for array

-119-

Tunas: begin
integer dim,length,size,n,i,j,prod;
getf(2,next);
goto found;

next: getfa(2,-1);
found: if f[rfj . 1

then goto none;
delete(rf);

none: np rp;

nq rq;

get(3);
dim :. convert(rp,rq);
if dim + 0
then length :. 6 + rq - rp
else begin

if fn - 2 x dim < 1

then goto diag(1);
size :- 1;
for n 1 step 2 until 2 x dim
do begin

get(n + 3);
f(fn - nj convert(rp,rq);
get(n + 4);
f(fn - n + 11 convert(rp,rq),
size :- size x (f(fn nj - f(fn - n + 1) + 1);

end The amcmt of storage which needs to be reserved
for an array ie a function of the dimension bounds
for that array and the dimension. At this po:nt
the dimension bounds are calculated and stored
immediately to the left of the first form in
storage. If there is not enough room for all of
them, there will not be room for the array. Even-
tually, they will be moved into their rroper place
in the form;

length :- 6 + 2 x dim + size + nq np;

end 'length' is the actual length of the form in cells of

storage. The next state -ent is a test to check if
there is room for the array in form storage;

-120-

if fn - length < I

then goto diag(1];
rf fn;

fn fn - length;
f(fn] :. 4;

f(fn + 1] := hash(w,np,nq);
f(fn + 3] := dim;

f(fn + 4] := (if dim . 0 then 5 else 5 + 2 x dim + size);
f[fn + 5) :. length - 1;
if dim . 0
then a(fn + 6] : 0.
else begin

f(fn + 6] : 6 + 2 x dim;

for i :. 2 x dim step -1 until 1
do f[fn + 6 + f(rf + i - 2 x dim);
comment This last statement moves the dimension bounds

from their position at the end of the form into
the place they will permanently occupy. In the
process, it reverses their order, so the sub-
script bounds on the lowest dimension come first
in the form. This organization is required for
other routines;

for i := 1 step 1 until dim
do begin

prod 1;

for j 1 step 1 ultil dim -
do prod : prod x + 6 + 2 * j]

- f[fn + 5 + 2 x j] + 1);

f[fn + 6] : f(fn + 61 - prod x
(f[fn + 7 + 2 x (dim i)) - 1);

end TU8 short segment computes the base value of
array. The next several statements set the whole
array to zeros;

for i :. 6 + 2 x dim + 1 stet 1 until f(fn + 41
do a(fn + 0.;

end;

for i :. 1 step 1 until nq - np
do f(f(fn + 4 + i]] wInp + IA;
goto nullret;
end The whole routine is taken somewh2t from leocers"inserti

routine. It transforms a TRAC array definition into a
request for storage space. Notice that there are two kinls
of arrays, those with zero dimension and those with cn-zero
dirlenaion and that they must be treated separately;

-121-

funat: begin
integer id;
getfa(2,4);
np :- rf;
getfa(3,4);
if f(np + 2] 2 and f[rf + 2] m 2

and f(rf + 9] - f(rf + 8) = f(np . 7] - f(np + 6]
and f(rf + 7) - f(rf + 6) f(np + 9] - f(np + 8]

then for i :- 0 step 1 until f(np + 71 - f(np + 6)
do for j : 0 step 1 until f(np + 9] - f(np + 8)

do a(map(rf,j,i)] : a(map(np,i,j)];
else zbranch(4);
goto nullret;
end ' funat' is the array transposition routine. The coding

is obvious;

funav: begin
getfa(2,0);
setup(rf + 2,ct);
goto unstack;
end 'funav' is the dimension value AnItion. Note that it

returns a value;

funsa: begin
getfa(2,4);
np :- rf;

getfa(3,4);
if f(np + 2) 0 and f(rf + 2] 0

then a(rf + 5) :- abs(a(np + 5));
else zbranch(4);
goto nullret;
end 'Ansa' is the scalar absolute value primitive. It has

no coTplicatione.

1 ?5

-122-

funse: begin
getfa(2,4);
np := rf;
patfa(3,4);
if f(np + 2] = 0 and f(rf + 2] = 0
then a(rf + 5) := exp(a[np + 5])
else zbranch(4);
goto nullret;
end 'Anse' is the scalar exponential fUnction;

funsl: begin
getfa(2,4);
np := rf;
getfa(3,4);
if f(np + 2] = 0 and f[rf + 2] = 0 and a(np + 5] > 0.
then a(rf + 51 := ln(a(np + 51)
else zbranch(4);
goto nullret;
end ' funsl' is the scalar log function;

funsp: begin
getfa(2,5);
np rf;

getfa(3,5);
nq := rf;
getfa(4,5);
if thip + 2] . 0 and f(rf + 2) = 0 and fInq + 2] 0

and a(np + 5] > 0.
then Etta + 5) := a(np +5],a(nq + 51
else if a(np + 5] = 0.

then a(rf + 5] := 0.

else zbranch(S);
goto nullret;
end 'Anse' is the scalar power Poultion. At presea it

will only calculate the power of a positive nv.mber,
but this may be changed;

-123-

procedure getfa(n,m);
integer n,m;
value n,m;

begin
if atb + n > atl
then zbranch(m);
get(n);
find(rp,rq,cf,nullret);

if f]rf] 0 4
then zbranch(m);
end This is the array version of 'getf';

integer procedure index(dimpoint,firstarg);
integer dimpoint,firstarg;
value dimpoint,firstarg;

begin
integer hold,prod,i,j,base;
base :- dimpoint + 3;
if f[dimpoint) < 1

then goto nullret;
hold :- [[base];
for i := 1 step 1 until [[dimpoint]
do begin

prod := 1;
for j := l step 1 until f[dimpoint] -
do prod := prod * (f[base + 2 x j) - ([base + 2 x j 1] + 1);
get(firstarg + f[dimpoint] 1);

hold :- hold + prod x (convert(rp,rq) 1);
end;

index := hold;
end This routine calculates the iirear subscript of an array

ciervnt w;len the array vAbscripts are BCD in the neutral
strin(2. 'dinpoint' is a pointer to the dimension of the
array which is referenced and 'firstarg' is the nurIer of
the first array s4bs:ript in the argur-ent stack for the
present function helm evaluated;

-124-

integer procedure map(point,i,j);
integer point,i,j;
value point,i,j;

begin
map := (f[point + 7] f[point + 6] x (f[point + 8] + i 1)

+ f[point + 6] + j - 1 + f[point + 5] + point;
end This function calculates the linear subscript of a matrix

element when supplied with a pointer to the head of the
matrix and two subscripts. The subscripts must be normalized
to lie between zero and the range of the dimension which they
subscript;

procedure setup(pointer,aorn);
integer pointer,aorn;
value pointer,aorn;

begin
integer start,i;
if aorn = 0
then for i := expand(pointer) step 1 until wl

do begin
w[wn] := w[i];

wn := wn + 1;
end

else if aorn = 1
then begin

start := expand(pointer);
if fl wl 1 + start < 1

then goto diag[3];
comment This means tha!, the active string is not long

enough to handle the string;
tot J. := wl stc2 -1 until start
do begin

fl := fl - 1;
f[fl] := w[i];
end;

end

else zbranch(0);
end 'setup' retur4c integers from machine language format to E^D

in either the neutral or active string, depending cn the value
of 'aorn'. 'pointer' refers to the 'f' storage vector;

-125-

procedure zbranch(n);
integer n;
value n;

begin
if n > 0
then begin

get(n);
goto argret;
end If this branch is taken, then the n-th argument in the

neutral stack returned cc3 a value;
else if n = -1

then goto none
else goto nullret;

end The last two branches provide, first, a special branch for
the 'delete' routine, and second, a branch to 'nullret'.
This routine is intended for use n situations where the
number describing the type of branch may need to be calcu-
lated;

APPLICATIONS

The easiest application is a routine to transform curvilinear models

into linear ones. If observations of n predictor variables and m predicted

variables are taken, then a curvilinear model for the dependence Is function

f of the form

f(<x1,x2 xn>) = <Y1,Y2,.e.am>

where the vector Y is not a linear function of the vector x. It is possible

to write, by inspection of the function f, a set of functions gi, where i

ranges from 1 to p, and where p is greater than or equal to n, such that a

new set of predictor variables xi' are generated by

gi(<xi,x2 , xn>) xi'

and a function f' such that

c(<Y,x2' ,,,,, xp'>' <Y1,Y2,...,Y,>

and f' is linear. The functions g
i
are not canonically determined by the

structure of f, but anybody using a curvilinear mcdel will know enough to

determine them in a proper manner and they and the function f' always exist.

It is relatively simple to design a TRAC procedure which, given the trans-

formation functiciis gi in some standard notation and the name of a data

matrix, will parse the functions and produce a transformed data matrix of

the proper dimensions. The sc(qar absolute value, exponential, logarithm,

and power functions were included in the package to mdke these transfor-

mations possible.

Another obvious application is the construction of a statistical

desk calculator. This calculator will include built-up TRAC procedures

for the standard statistics and the opportunity to use the primitives in

TRAC for e:Araordinary problems. There will be elaborate error recovery

and detection routines and materials designed for the guidance of beginning

users. This calculator will Fe relatively slow in copparison to hand-

:ailored routines for each individual statistic, but this will be made up

by the flexibility of the package and the chance for the user to investigate

-126-

-127-

the statistical behavior of the data he is using. Beaton has suggested that

this kind of ability is the next step statistics must take in its growth as

a research tool.

CONCLUSION

This paper has shown that the addition of statistical powers to TRAC

is feasible, and, once the design problem is scOmed, fairly easy. The

problem of combining these operators in usable ways is left to the statis-

tician, although that is Fairly easy to do also, once Beatc (1964) is read

and understood. But there is more to the problem than this summary suggests.

In the first place, the operators which have to do only with the man-

ipulation of arrays have been arranged so that they may be extended, and in

some cases already are, to arrays of higher dimension than two. The array

storage mechanisms and the input and output routines are also applicable

to the arrays of higher dimension. It is my hope that these 311 nay be com-

bined into a matrix and tensor calculator, which, using the textual nature

of TRAC, will be able to manipulate these objects symbolically, and which,

using my primitives and extensions of them, will be able to translate these

symbolic manipulations in actual. arithmetic calculation. TRAC is ideal for

interpretive work with textual objects and this is precisely the kind of

work that needs to be done ie the newly opened field of formal manipulation

by machine of algebraic structures. Although the work will not go on at

ISVD, I would hope that others could take it up.

A more important point is the transient nature of this solution to

ISVD problems in statistics. Earlier, it was mentioned that no primitive

in TRAC relies on any ()the:. Thus, although these primitives work for ISVD,

there is no reason for them to work for anybody else and there is no reason

for anyone else to use them. but there is a reason for their presentation.

As others need statistical powers ir, TRAC, they may add the whole package,

a part of it, or only take the suggestions here as a starting point for

their own solution. And this is the power of TRAC. Zach interpreter may

be tailored to the needs of the situsticn in which it ;s to be used. This

has been on the surface a study of a particular problem for ISVD, but more

deeply, it is an essay on the flexibility cf TRAC. It is my hope that it

will serve pore as an example in the philosophy of programming languages and

the practical application of that philosophy tIln as a strict answer to a

set problem.

-128-

1:

BIBLIOGRAPHY

Arden, B.; Caller; and Graham. (1966) The Michigan Algorithm Decoder
(The MAD Manual). Revised by E. Organick. Ann Arbor, Michigan:
University of Michigan Press.

Beaton, A. (1964) The Use of Special Matrix Operators in Statistical
Calculus. Research Bulletin RB-64-51. Princeton, New Jersey:
Educational Testing Service.

. (1966) "Considerations in the Construction of a Computer
Language for Data Analysis." Princeton, New Jersey: Educational
Testing Service. [unpublished)

Hutchinson, T. (1967) Internal Memoranda on the Beaton Subroutires.
Cambridge, Massachusetts: Information System for Vocational De-
cisions. (unpublished]

LaBrie, R. (1966) "The Feasibility of Providing Statistical Power to a
Text Handling Language Used in a Computer Based Educational System."
Submitted to Harvard Graduate School of Education, Course B-60.

Mooers, C. (1966) "TRAC, t. Procedure-Describing Language for the Re-
active Typewriter." Communications of the ACM. 9,3.

; and Deutsch, P. (1965) "MAC, A Procedure Handling Language."
Proceedings of the ACM - 20th An,ntcl Conference. Cleveland, Ohio:
229-246.

. (1966) "TRAC in ALGOL, Level Zero Standard Processor (Draft)."
Cambridge, Massachusetts: Rockford Research Institute, Inc. [un-
published]

Tiedeman, David V. (1965) "A Proposal for an Information System for Vo-
cational Decisions." Submitted to the U.S. Office of Education by
the Uarvard Graduate School of Education.

Calingaert, C. (1965) Principles of Computation. Reading, Massachusetts:
Addison - Wesley.

-129-

1 35

APPENDIX G

Flow Charts

1:',1

Enter here after
LOGOUT to initialize
for next user

Ente7 here at the
completion of a
script .tep
(Chart II)

TRAC

/TRAC
discovered by
Recognieer

Call HASH to set
up PPE region and
initialise tables

TRACLO

Initialize user
storage area

Set script to
LOGIN

Set TRAC registers
to neutral

Did

student type
TRAC itatezent at
KEYBOAPL2 Or was

there an
irror2

0

Is FPI
for script already

set up2

I

Sst STEP to
"44" for continue

ALLSET yes

Call HASH
for next step

Is it

a TRAC
staterentl

no

iel

branch according to
statement type

4 4

CHART I

SESSION AND FIEF' INITIALIZATION

KEY2

no Set up FPB
from contentsntents

of STEP

CRT DECOKE. GOITG KEYBOARD

yea

Enter here
if student types TRAC
etatetemt at Keyboard

CIOCT2

Hove step into
active ftatk

-131-

IP INILIP (Chart 11)

Enter here to
look at next active

chat.

TRAC statement
encountered either
in script step or
from console end move
into Active stack
(Chart II and)

1NTERP

Move
characters in
active stack?

yes

Is next
character

("?

yes

no

Is next
character

yes

no

Are next
characters
"WI

yes

MART II

TRAC MAIN INTERPRETER

INI (Chart I)

ALP

Scan to matching

")" 'toting intervening
character.' in neutral

stick

ARP (Chart III)

ACL

Mark beginning
of active function

in s-stack

..11.412

Are next
3 characters

"00("?

yes
Mark beginning

of neutral function
in s-stack

Is next
character

COPY

Put character in
neutral stack

INT ERP

yes

ACM

Mork end of argument,
beginning of argument

in s-stack

-)32-

INTERP

INTERP

INTERP

INIERP

The !Trm/ Reran
of TRAC function
le found. It's
arguments are in the
neutral stcck pointed
up by s-stack.

ARP

Mark end of last
argument in

sck

Set WS to RWN to mark
end of function

Locate ARGI and
determine its nature

CHART III

TRANSFER TO AND FROM A TRAC FUNCTION

Isno
it in forms

ttolsgel

Execute the function

NI.IRTN

Delete notes in
11-11[1,4 for this

function

LNSTAK

Restore notes on
deferred function
to continue scan

1NTERP
(Chart 11)

nn

NLIATN

yea
Move [ring into
neutral stack st
WS marking end

with RWN

Does
value begin
yfth

Move
to RAQ Into

ova value from

active stack with
R

end at RAN

4
UNSTAK

Move value from ARP

to RRQ over arguments
for 'his function
in neutral stack.
Sat RWN to last

character.

ENST4AX

-133-

Transfer
contents
to STEP

1-)

INS

(Chart I)

Set C744ARCRIN

